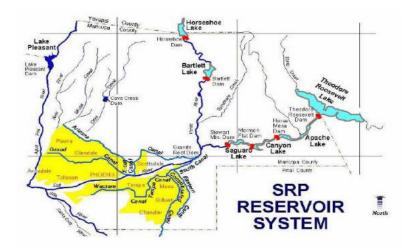
REGIONAL WATER QUALITY NEWSLETTER

DATE: Report for January 2013 A Tempe, Glendale, Peoria, Chandler, Phoenix, ADEQ, CAP, SRP, Epcor ASU Regional Water Quality Partnership

http://enpub.fulton.asu.edu/pwest/tasteandodor.htm

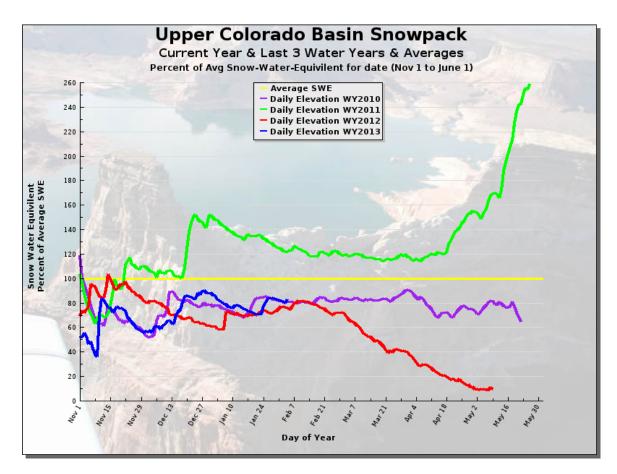
SUMMARY: EVALUATION AND RECOMMENDATIONS

- 1. Data for January and February 2013 are included in this Newsletter.
- MIB and geosmin are low everywhere EXCEPT for the past month in Chandler WTP influent. This is surprising given the cold water temperatures, which usually discourage T&O production. Why are there high levels of Geosmin only at Chandler WTP? Wells pumping on the Consolidated Canal above Chandler WTP contain significantly different water quality than SRP surface waters. In the past we have seen this to lead to Geosmin producing algae in the Consolidated Canal. This seems to be the case again now. The wells below are pumping into the Consolidated canal, some of which contain elevated nitrate levels which spur on growth of some cyanobacteria that produce Geosmin.
- 3. We have observed a major storm event with runoff in the Salt River which impacts dissolved organic carbon levels in Roosevelt Lake. Both dissolved and particulates were delivered into the lake in the Runoff.
- 4. Snowpack in the Upper Colorado River basin is ~ 82% average, slightly higher snowpack levels exist in parts of Arizona. This means we will have runoff this spring which loads organics into the reservoirs.
- 5. Quarterly sampling of the Salt River reservoirs continue, and data is presented. We have started measuring trace metals in an effort to better track sources of this water.


Quick Update of Water Supplies for February 2013 (during day of sampling – February 4th)

Source	Trend in supply	Discharge to	Flow into SRP	Dissolved organic carbon
		water supply	Canal System	Concentration (mg/L) **
		system		
Salt River	Reservoirs at	181 cfs	103 cfs into	4.1 mg/L
	54% full		Arizona	
Verde River	Reservoirs	100 cfs	Canal	2.3 mg/L
	At 32% full		226 cfs into	0,
			South Canal	
			(57% Salt	
			River Water)	
			,	
Colorado	Lake Pleasant is 69%	Lake Pleasant	33 cfs of CAP	2.8 mg/L
River	full (Lake Powell is	filling; direct	water into	
	50% full)	Colorado River	South Canal	
		water is in the	South canal	
		CAP canal	140 cfs	
Groundwater	Generally increasing	140 cfs pumping	Groundwater	0.5 to 1 mg/L
	due to recharge	by SRP		0,
			Pumping into	
			SRP Canals	

*Concentration of these taste and odor compounds in the upper [lower] levels of the terminal reservoir (Saguaro Lake on the Salt River; Bartlett Lake on the Verde River; Lake Pleasant on the CAP system **Concentration of DOC in the terminal reservoir


*** On paper cities are receiving CAP water in the SRP canals, but as a method of "paying back" from the last drought for excess CAP deliveries – SRP is delivering wet water only from the Salt and Verde Rivers Data from the following websites:

- <u>http://www.srpwater.com/dwr/</u>
- http://www.cap-az.com/Operations/LakePleasantOps.aspx
- http://lakepowell.water-data.com/

How is our Snowpack this year? This is a valuable water supply for us during the summer/fall.

The upper Colorado river snowpack is 82% of average as of February 11, 2013. Arizona data is tabulated below, but running slightly under the long-term average too.

Based on Mountain Data from

NRCS SNOTEL Sites **Provisional data, subject to revision** Data based on the first reading of the day (typically 00:00) for Tuesday, February 12, 2013

Based on Mountain Data from NRCS SNOTEL Sites **Provisional data, subject to revision** Data based on the first reading of the day (typically 00:00) for Tuesday, February 12, 2013 **Provisional data, subject to revision** Data based on the first reading of the day (typically 00:00) for Tuesday, February 12, 2013 Data based on the first reading of the day (typically 00:00) for Tuesday, February 12, 2013 Snow Water Equivalent Percent of Today's Median Median Basin **Current Median** Peak Median Elev Peak Today's Site Name (ft) (in) Date Median Peak (in) (in) VERDE RIVER BASIN **BAKER BUTTE** 7300 3.0 5.0 5.3 Mar 04 60 57 7700 9.2 N/A N/A N/A **BAKER BUTTE SMT** * * N/A N/A N/A * BAR M 6393 1.8 * N/A N/A * 2.5 N/A * **CHALENDER** 7100 N/A N/A * N/A * FORT VALLEY 7350 0.6 4.17.0 FRY 7200 6.0 Mar 01 68 59 HAPPY JACK 7630 4.5 6.8 6.6 Mar 08 151 103 5.0 MORMON MOUNTAIN 7500 4.4 4.9 Feb 24 114 102 N/A MORMON MTN SUMMIT 8500 7.8 N/A N/A WHITE HORSE LAKE 7180 2.4 4.6 4.8 Feb 23 52 50 74 87 **Basin-wide percent** SAN FRANCISCO PEAKS SNOWSLIDE CANYON 9730 14.111.6 18.8 Mar 22 122 75 122 75 **Basin-wide percent** CENTRAL MOGOLLON RIM 3.0 **BAKER BUTTE** 7300 5.0 5.3 Mar 04 60 57 N/A N/A N/A **BAKER BUTTE SMT** 7700 9.2 * 3.7 5.5 5.5 7640 Feb 12 67 67 HEBER PROMONTORY 7930 10.6 9.3 11.8 Mar 10 114 90 87 77 **Basin-wide** percent LITTLE COLORADO - SOUTHERN HEADWATERS 7300 5.0 **BAKER BUTTE** 3.0 5.3 Mar 04 60 57 BAKER BUTTE SMT 7700 9.2 N/A N/A N/A * 9125 6.3 7.2 8.3 76 BALDY Mar 06 88 5.5 5.5 **HEBER** 7640 3.7 Feb 12 67 67

MAVERICK FORK	9200	6.5	7.8	9.2	Mar 17	83	71
PROMONTORY	7930	10.6	9.3	11.8	Mar 10	114	90
Basin-wide percen	t					86	75
UPPER SALT RIVER	R BAS	SIN / W	HITE	MOUN	TAINS		
BALDY	9125	6.3	7.2	8.3	Mar 06	88	76
BEAVER HEAD	7990	0.6	3.5	5.9	Mar 07	17	10
CORONADO TRAIL	8400	0.5	2.9	3.3	Jan 31	17	15
HANNAGAN MEADOWS	9020	8.3	9.4	11.3	Mar 19	88	73
MAVERICK FORK	9200	6.5	7.8	9.2	Mar 17	83	71
NUTRIOSO	8500	0.2	N/A	N/A	N/A	*	*
WILDCAT	7850	3.3	3.3	3.6	Feb 21	100	92
WORKMAN CREEK	6900	6.5	5.8	5.8	Feb 15	112	112
Basin-wide percen	t					80	68
SAN FRANCISCO /	UPPI	ER GIL	A RIVE	R BAS	SIN		
BEAVER HEAD	7990	0.6	3.5	5.9	Mar 07	17	10
CORONADO TRAIL	8400	0.5	2.9	3.3	Jan 31	17	15
FRISCO DIVIDE	8000	1.1	2.9	2.9	Feb 14	38	38
HANNAGAN MEADOWS	9020	8.3	9.4	11.3	Mar 19	88	73
LOOKOUT MOUNTAIN	8500	0.6	2.6	2.6	Feb 13	23	23
NUTRIOSO	8500	0.2	N/A	N/A	N/A	*	*
SIGNAL PEAK	8360	1.7	4.2	4.4	Feb 28	40	39
SILVER CREEK DIVIDE	9000	4.4	6.9	8.6	Mar 12	64	51
Basin-wide percen	t					53	44
CHUSKA MOUNTAI	NS	-					
BEAVER SPRING	9200	9.7	N/A	N/A	N/A	*	*
NAVAJO WHISKEY CK	9050	-M	N/A	N/A	N/A	*	*
Basin-wide percen	t					*	*

-M = Missing data. * = Analysis may not provide a valid measure of conditions. N/A = Not

Dissolved Organic Carbon In Reservoirs and Treatment Plants

DOC = Dissolved organic carbon UV254 = ultraviolet absorbance at 254 nm (an indicator of aromatic carbon content) SUVA = UV254/DOC TDN = Total dissolved nitrogen (mgN/L)

Reservoir Samples

Table 4 - Reservoir Samples – February 5, 2012

Reservoir sampling conducted monthly. CAP is sampling Lake Pleasant and Havasu, and USGS is sampling Verde River at Tangle and Salt River above Roosevelt on slightly different days than the other reservoirs.

Sample Description	Location	DOC (mg/L)	UV254 (1/cm)	SUVA (L/mg- m)	TDN
Havasu (January)		3.1	0.040	1.3	0.4
Laka Diagont (January)	Epilimnion	3.2	0.039	1.2	0.4
Lake Pleasant (January)	Hypolimnion	3.4	0.039	1.1	0.4
Verde River	@ Tangle	4.4	0.151	3.4	0.5
Verde River	@ Beeline Hwy	1.8	0.055	3.1	0.5
Bartlett Reservoir	Epilimnion	2.7	0.071	2.6	0.5
Bartiett Reservoir	Hypolimnion	2.1	0.050	2.4	0.4
Salt River above Roosevelt	above Roosevelt	9.6	0.475	4.9	1.4
	Epilimnion	4.2	0.068	1.6	0.4
Saguaro Lake	Epi - Duplicate	4.7	0.069	1.5	0.5
	Hypolimnion	3.9	0.066	1.7	0.4
Salt River	@ Blue PointBridge	3.7	0.064	1.7	1.7

Organic Matter in Canal

Table 3 - Rivers and Canals – January 7, 2013 (CAP 01/08)

Sample Description	DOC (mg/L)	UV254 (1/cm)	SUVA (L/mg- m)	TDN
Waddell Canal	4.3	0.041	0.9	0.4
Anthem WTP Inlet	3.8	0.037	1.0	0.5
Union Hills Inlet	3.1	0.042	1.4	0.4
CAP Salt-Gila Pump Station	3.1	0.038	1.2	0.3
CAP Mesa Turnout	3.1	0.038	1.2	0.4
CAP Canal at Cross-connect		No flo)w	
Salt River @ Blue Pt Bridge	4.4	0.064	1.5	0.3
Verde River @ Beeline	2.1	0.031	1.5	0.3
AZ Canal above CAP Cross-connect	Offline			
AZ Canal below CAP Cross-connect		Offlin	ne	
AZ Canal at Highway 87		Offli	ne	
AZ Canal at Pima Rd.		Offlin	ne	
AZ Canal at 56th St.		Offlin	ne	
AZ Canal - Central Avenue	Offline			
AZ Canal - Inlet to Glendale WTP	3.4	0.1	1.6	2.8
AZ Canal at Inlet to GreenwayWTP		Offlii	ne	
South Canal below CAP Cross-connect	2.8	0.041	1.5	0.3
Head of the Tempe Canal	1.7	0.019	1.1	1.2
Tempe Canal - Inlet to Tempe's South Plant	1.8	0.028	1.6	1.6
Head of the Consolidated Canal	0.1	0.020	18.2	1.2
Middle of the Consolidated Canal	1.5	0.020	1.3	4.2
Chandler WTP – Inlet	1.6	0.021	1.3	4.2

Table 3 - Rivers and Canals – February 4, 2013

Sample Description	DOC (mg/L)	UV254	SUVA (L/mg-	TDN
		(1/cm)	m)	
Waddell Canal	2.9	0.045	1.6	0.6
Anthem WTP Inlet	3.9	0.046	1.2	0.6
Union Hills Inlet	2.8	0.033	1.2	0.6
CAP Salt-Gila Pump Station (January)	3.1	0.038	1.2	0.4
CAP Mesa Turnout (January)	1.5	0.020	1.3	4.2
CAP Canal at Cross-connect	2.8	0.046	1.6	0.5
Salt River @ Blue Pt Bridge	3.7	0.1	1.7	0.4
Verde River @ Beeline	1.8	0.055	3.1	0.5
AZ Canal above CAP Cross-connect	not accessible			
AZ Canal below CAP Cross-connect		not acces	ssible	
AZ Canal at Highway 87	3.1	0.063	2.0	0.5
AZ Canal at Pima Rd.	2.5	0.063	2.5	0.6
AZ Canal at 56th St.	4.5	0.133	3.0	3.3
AZ Canal - Central Avenue	5.2	0.152	2.9	0.8
AZ Canal - Inlet to Glendale WTP	5.0	0.085	1.7	2.0
AZ Canal - Inlet to GreenwayWTP		Offli	ne	
South Canal below CAP Cross-connect	not accessible			
Head of the Tempe Canal	1.1	0.023	2.1	1.9
Tempe Canal - Inlet to Tempe's South Plant	1.6	0.014	0.9	0.9
Head of the Consolidated Canal	1.1	0.018	1.6	1.8
Middle of the Consolidated Canal	1.0	0.022	2.2	1.6
Chandler WTP – Inlet	0.9	0.022	2.4	4.3

Organics at the Water Treatment Plants

Sample Description	DOC (mg/L)	UV254 (1/cm)	SUVA (L/mg- m)	TDN
Union Hills Inlet	3.1	0.042	1.4	0.4
Union Hills Treated	2.7	0.021	0.8	0.4
Tempe North Inlet		Offi		
Tempe North Plant Treated		Offli	ne	
Tempe South Inlet	1.8	0.028	1.6	2.6
Tempe South Plant Treated	1.2	0.006	0.5	2.7
Greenway WTP Inlet				
Greenway WTP Treated	Offline			
Glendale WTP Inlet				
Glendale WTP Treated	3.4			
Anthem WTP Inlet	3.8	0.037	1.0	0.5
Anthem WTP Treated	3.0	0.038	1.3	0.4
Chandler WTP Inlet	1.6	0.021	1.3	4.2
Chandler WTP Treated	1.7	0.018	1.0	2.4

Table 2 - Water Treatment Plants – January 7, 2013

Table 2 - Water Treatment Plants – February 4, 2013

Sample Description	DOC (mg/L)	UV254 (1/cm)	SUVA (L/mg- m)	TDN
Union Hills Inlet	2.8	0.033	1.2	0.6
Union Hills Treated	2.3	0.026	1.1	0.5
Tempe North Inlet		Offli		
Tempe North Plant Treated		OIII	ne	
Tempe South Inlet	1.6	0.014	0.9	2.8
Tempe South Plant Treated	1.0	0.011	1.1	2.7
Greenway WTP Inlet		Offli		
Greenway WTP Treated		OIII	ne	
Glendale WTP Inlet	5.0	0.085	1.7	2.0
Glendale WTP Treated		Offli	ne	
Anthem WTP Inlet	3.9	0.046	1.2	0.6
Anthem WTP Treated	2.6	0.044	1.7	0.5
Chandler WTP Inlet	0.9	0.022	2.4	4.3
Chandler WTP Treated	1.1	0.015	1.4	3.9

DOC removal (%)
13
Offline
22
33
Offline
3
22
-

DOC
removal (%)
18
r
38
-
33
-22

Taste and Odor

MIB, Geosmin and Cyclocitral are compounds naturally produced by algae in our reservoirs and canals, usually when the water is warmer and algae are growing/decaying more rapidly. They are non toxic, but detectable to consumers of water because of their earthy-musty-moldy odor. The human nose can detect these in drinking water because the compounds are semi-volatile. Since compounds are more volatile from warmer water, these tend to be more noticable in the summer and fall. The human nose can detect roughly 10 ng/L of these compounds. Our team collects samples from the water sources and raw/treated WTP samples. We usually present all the data when concentrations start to exceed 5 ng/L.

- Data for this month on the next page
- As usual for December, the elevated MIB & geosmin season has ended. In the canals and treatment plants the levels are < 10 ng/L. This is down from the high teens in early November 2012.
- Lake Pleasant is filling with Colorado River water and actually has the highest levels of year.
- Saguaro Lake had peak MIB levels of 75 ng/L in July 2012 and ~20 to 30 ng/L through November.
- Bartlett Lake had peak MIB levels of 100 ng/L in July and ~20 to 30 ng/L through November.

WTP Data for January and February 2013

Sample Description	MIB (ng/L)	Geosmin (ng/L)	Cyclocitral (ng/L)
Union Hills Inlet	<2.0	<2.0	<2.0
Union Hills Treated	<2.0	<2.0	<2.0
Tempe North Inlet			
Tempe North Plant Treated	1		
Tempe South WTP	<2.0	<2.0	<2.0
Tempe South Plant Treated	<2.0	<2.0	<2.0
Anthem Inlet	<2.0	<2.0	<2.0
Anthem Treated	<2.0	<2.0	<2.0
Chandler Inlet	<2.0	31.4	<2.0
Chandler Treated	<2.0	30.8	<2.0
Greenway WTP Inlet			
Greenway WTP Treated	1		
Glendale WTP Inlet	<2.0	2.0	<2.0
Glendale WTP Treated	1		

 Table 2 - Water Treatment Plants – January 7, 2013

Table 2 - Water Treatment Plants – February 4, 2013

Tuble 2 Water Heath	1 col ual y 4, 2015		
Sample Description	MIB (ng/L)	Geosmin	Cyclocitral
		(ng/L)	(ng/L)
Union Hills Inlet	<2.0	<2.0	<2.0
Union Hills Treated	<2.0	<2.0	<2.0
Tempe North Inlet			
Tempe North Plant Treated			
Tempe South WTP	<2.0	<2.0	<2.0
Tempe South Plant Treated	-2.0	-2.0	-2-0
Tempe South Flant Treated	<2.0	<2.0	<2.0
Anthem Inlet	<2.0	<2.0	<2.0
Anthem Treated	<2.0	<2.0	<2.0
Chandler Inlet	<2.0	22.0	<2.0
Chandler Treated	<2.0	15.2	<2.0
Greenway WTP Inlet			
Greenway WTP Treated			
Glendale WTP Inlet	<2.0	5.6	<2.0
Glendale WTP Treated			

Why are there high levels of Geosmin only at Chandler WTP?

Wells pumping on the Consolidated Canal above Chandler WTP contain significantly different water quality than SRP surface waters. In the past we have seen this to lead to Geosmin producing algae in the Consolidated Canal. This seems to be the case again now. The wells below are pumping into the Consolidated canal, some of which contain elevated nitrate levels which spur on growth of some cyanobacteria that produce Geosmin.

Well Location	Current Status	Current Flow (GPM)
28.3E-04.2N	ON	3585
28.8E-05.0N	ON	2855
29.5E-03.4N	ON	3245
29.5E-05.7N	ON	3700
30.3E-02.6S	ON	1920
30.8E-01.9N	ON	4000
30.8E-06.5N	ON	
30.9E-01.6S	ON	2300
31.0E-06.7N	ON	3590
31.1E-00.3N	ON	2975
31.1E-02.1S	ON	1010
31.2E-01.0N	ON	2610
31.5E-06.4N	ON	3455
32.3E-07.0N	ON	4120
28.5E-04.0N	OFF	0
28.9E-05.5S	OFF	0
29.0E-03.8N	OFF	0
29.3E-04.0S	OFF	0
29.6E-03.5S	OFF	0
30.0E-02.8N	OFF	0
30.0E-04.3N	OFF	0
30.0E-05.9N	OFF	0
30.1E-03.0S	OFF	0
30.5E-06.0N	OFF	0
30.8E-02.0S	OFF	0

30.8E-06.2N	OFF	0
31.0E-01.5S	OFF	0
31.1E-01.0S	OFF	0
31.1E-01.1S	OFF	0
31.3E-00.5S	OFF	0
31.6E-03.0S	OFF	0
31.8E-06.5N	OFF	0
32.5E-00.0N	OFF	0
32.8E-07.2N	OFF	0
33.1E-07.3N	OFF	0
33.3E-07.5N	OFF	0

Table 3 - Canal Sampling		7-Jar	n 7-Jan	7-Jan	
System	Sample Description	MIB (ng/L)	Geosmin (ng/L)	Cyclocitral (ng/L)	
CAP	Waddell Canal	<2.0	2.3	<2.0	
	Union Hills Inlet	<2.0	<2.0	<2.0	
	CAP Canal at Cross-connect				
	Salt River @ Blue Pt Bridge	<2.0	<2.0	<2.0	
	Verde River @ Beeline	<2.0	2.2	<2.0	
AZ	AZ Canal above CAP Cross-connect				
Canal	AZ Canal below CAP Cross-connect				
	AZ Canal at Highway 87				
	AZ Canal at Pima Rd.	<2.0	<2.0	<2.0	
	AZ Canal at 56th St.				
	AZ Canal - Central Avenue				
	AZ Canal - Inlet to Glendale WTP	<2.0	2.0	<2.0	
	Head of the Consolidated Canal	<2.0	<2.0	<2.0	
	Middle of the Consolidated Canal	<2.0	<2.0	<2.0	
South	South Canal below CAP Cross-connect	2.0	2.1	<2.0	
Tempe	Head of the Tempe Canal	<2.0	<2.0	<2.0	
Canals	Tempe Canal - Inlet to Tempe's South	<2.0	<2.0	<2.0	
	Mesa Turnout	<2.0	2.2	<2.0	
	Salt-Gila Pump	<2.0	2.4	<2.0	

4-Feb	4-Feb	4-Feb
MIB (ng/L)	Geosmin	Cyclocitral (ng/L)
2.1	2.5	<2.0
<2.0	<2.0	<2.0
<2.0	2.2	<2.0
<2.0	<2.0	<2.0
<2.0	<2.0	<2.0
2.4	<2.0	<2.0
2.5	<2.0	<2.0
2.3	<2.0	<2.0
2.0	3.8	<2.0
<2.0	5.6	<2.0
<2.0	<2.0	<2.0
<2.0	<2.0	<2.0
<2.0	<2.0	<2.0

Table 4 - Reservoir Samples		8-Jan	8-Jan	8-Jan
Sample Description	Location	MIB (ng/L)	Geosmin (ng/L)	Cyclocitral (ng/L)
Lake Pleasant (Jan)	Eplimnion	<2.0	<2.0	<2.0
Lake Pleasant (Jan)	Hypolimnion	<2.0	2.1	<2.0
Verde River @ Beeline		<2.0	2.2	<2.0
Bartlett Reservoir	Epilimnion	<2.0	<2.0	<2.0
Bartlett Reservoir	Epi-near dock	<2.0	<2.0	<2.0
Bartlett Reservoir	Hypolimnion	<2.0	<2.0	<2.0
Salt River @ BluePt Bridge		<2.0	<2.0	<2.0
Saguaro Lake	Epilimnion	<2.0	<2.0	<2.0
Saguaro Lake	Epi - Duplicate	<2.0	<2.0	<2.0
Lake Havasu (Jan)		<2.0	2.0	<2.0
Verde River at Tangle Creek (Dec)		<2.0	<2.0	<2.0
Roosevelt at Salt River Inlet		2.0	3.6	<2.0

5-Feb	5-Feb	5-Feb
MIB	Geosmin (ng/L)	Cyclocitr
(ng/L)		al (ng/L)
<2.0	<2.0	<2.0
<2.0	<2.0	<2.0
<2.0	<2.0	<2.0
<2.0	<2.0	<2.0
<2.0	<2.0	<2.0
<2.0	<2.0	<2.0
<2.0	<2.0	<2.0
<2.0	6.2	<2.0
<2.0	5.4	<2.0
<2.0	2.0	<2.0
<2.0	<2.0	<2.0

Data from Quarterly Sampling

- Dissolved organic carbon (DOC) levels are at the lowest point in a few years mostly because of low runoff (few monsoons) on the Verde River. Higher levels of DOC over the past few years have been working their way through the series of Salt River reservoirs. Our quarterly sampling now show a large winter runoff event, possibly associated with runoff from the Wallow Fire, into Roosevelt Lake. DOC concentrations have increased in Roosevelt Lake by > 1 mg/L over the last few months. UV-VIS spectroscopy and fluorescence analysis of organic matter in these lakes show very little difference, which further suggests there are no hidden "pulses" of organics due to the Wallow Fire anywhere in the series of Salt River reservoirs.
- 2. MIB levels are higher in up-stream Salt River reservoirs (compared with Saguaro Lake). Of all the Salt River reservoirs, this quarter, Saguaro lake has the lowest levels of dissolved nitrogen or total phosphorous. Higher levels in upstream reservoirs could be associated with Wallow Fire and may suggest next year could have higher levels of MIB in Saguaro Lake and algae related DOC, because these nutrients spur on growth of algae.

Sample Description	Location	Location	MIB (ng/L)	Geosmin (ng/L)	Cyclocitral (ng/L)
Lake Roosevelt	Site 1	Eplimnion	<2.0	<2.0	<2.0
Lake Roosevelt	Site 1	Hypolimn	2.1	<2.0	<2.0
Lake Roosevelt	Site 2	Eplimnion	<2.0	<2.0	<2.0
Lake Roosevelt	Site 2	Hypolimn	<2.0	<2.0	<2.0
Lake Apache	Site 1	Eplimnion	<2.0	<2.0	<2.0
Lake Apache	Site 1	Hypolimn	<2.0	<2.0	<2.0
Lake Apache	Site 2	Eplimnion	<2.0	<2.0	<2.0
Lake Apache	Site 2	Hypolimn	<2.0	<2.0	<2.0
Lake Canyon	Site 1	Eplimnion	2.0	<2.0	<2.0
Lake Canyon	Site 1	Hypolimn	<2.0	<2.0	<2.0
Lake Canyon	Site 2	Eplimnion	2.1	<2.0	<2.0
Lake Canyon	Site 2	Hypolimn	<2.0	<2.0	<2.0

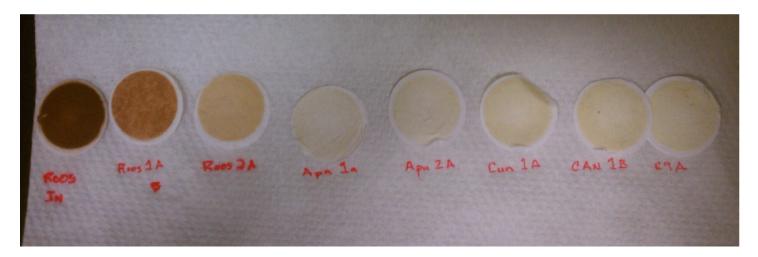
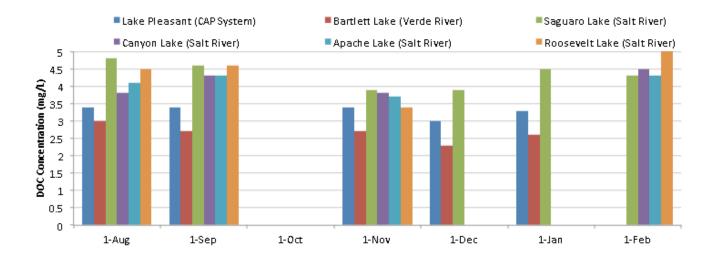
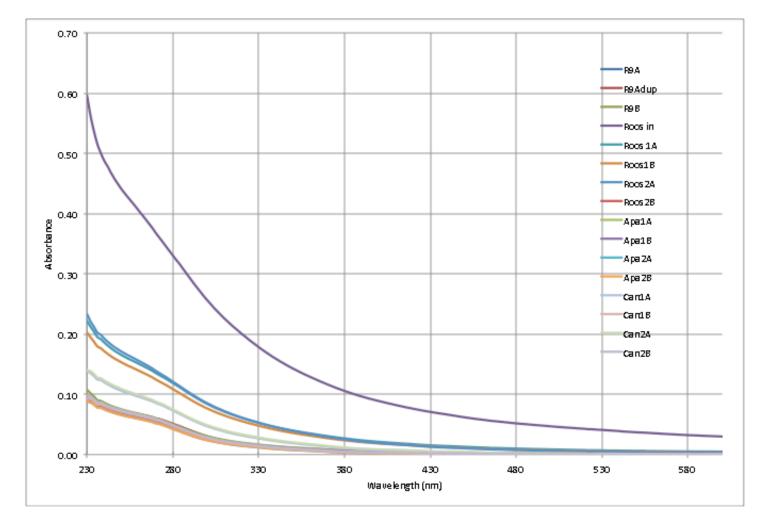

Quarterly Lake Sampling - February 6, 2012

Table 5 - Upper Reservoir Quarterly Samples – February 6, 2013

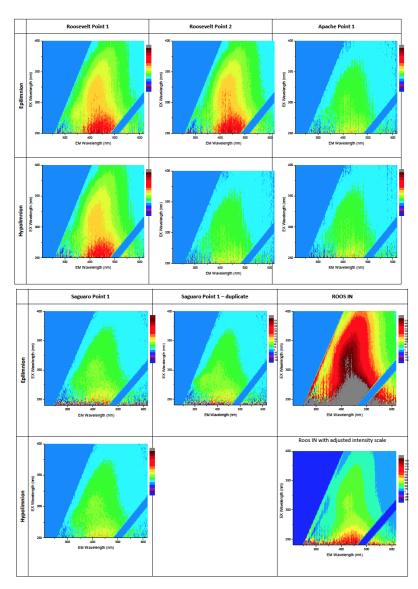

Samples are listed in upstream to downstream order

Sample Description	Location	DOC (mg/L)	UV254 (1/cm)	SUVA (L/mg- m)	TDN
	Epilimnion	5.3	0.150	2.9	0.6
Roosevelt	Hypolimnion	5.3	0.147	2.8	0.6
Kooseven	Epilimnion	5.9	0.164	2.8	0.7
	Hypolimnion	3.5	0.064	1.8	0.4
	Epilimnion	4.4	0.072	1.6	0.4
Apache	Hypolimnion	4.2	0.062	1.5	0.4
Apache	Epilimnion	3.5	0.060	1.7	0.4
	Hypolimnion	4.3	0.058	1.4	0.4
	Epilimnion	5.2	0.102	2.0	0.4
Canyon	Hypolimnion	3.9	0.066	1.7	0.5
	Epilimnion	4.8	0.102	2.1	0.4
	Hypolimnion	3.8	0.066	1.7	0.5
Saguaro Lake	Epilimnion	4.2	0.068	1.6	0.1
	Epi - Duplicate	4.7	0.069	1.5	0.1
	Hypolimnion	3.9	0.066	1.7	0.1

Particulates LOOK visually very different in the Reservoirs this month



ROOS In is the Salt River *entering* **Roosevelt lake and had high turbidity during the runoff**. Roosevelt lake itself (ROOS 1A and ROOS 2A) had redish color. In contrast to Roosevelt Lake, downstream lakes had yellowish-brown color which is typical of some algae activity.


Below are UV-Vis spectra for the series of Salt River lakes. Roos = Roosevelt Lake, Apa = Apache Lake; Can = Canyon Lake; R9 = Saguaro Lake. A = upper 10 m of the water column & B = sample from deeper in the water column. The data show the highest curve (largest absorbance) is for the Influent Roosevelt Sample (ROOS_in) which is the Salt River as it enters Roosevelt Lake. This is DISSOLVED organic molecules in the runoff, and is typical of events that mobilize decaying vegetation into water.

Similarity continues for **fluorescence spectra** (next page). Compounds fluorescence (give off light energy) when excited based upon the structure of their bonds. Where energy is fluoresced has been shown to relate to the "origin" of organic matter – either allochthonous (derived from soil or other terrestrial organic matter) or autochthonous (derived from algae or bacteria). These samples have autochthonous signatures. More details about intepretting these spectra are available – let us know if you want more information?

Fluorescence Excitation-Emission (EEM) Spectra

This type of analysis "fingerprints" dissolved organic matter. Brighter colors indicator higher "response" or more fluorescence. What the data below indicates is a decline in the "red" colored area by the time water leaves the uppermost lake (Roosevelt Lake) and then little change in NOM structure between Apache and Saguaro Lake. Most the high "red" response is in the influent side of Roosevelt Lake and near the surface – which is consistent with being impacted by runoff. The "red" colored area is consistent with humic substances.

New Datasets being collected on Quarterly Samples – Trace Metals

We will be collecting and analyzing a wide suite of trace metals quarterly to build a dataset on potential tracers of different source waters. This is something new that we hope to discuss over time, but raw data is shown here in case people have ideas on what they would like to see.

 Bit216
 Ni2316
 Ni2316<
 S
 Packase
 K, Tesse
 K, Tesse

 mgL
 mgL
 mgL
 mgL

 0729
 13.82
 13.46

 17853
 14.42
 34.21

 0140
 13.47
 13.27

 0150
 13.47
 13.27

 0150
 13.47
 13.27

 0151
 13.33
 10.23

 0152
 11.48
 150.73

 0352
 11.46
 150.73

 0352
 11.64
 150.73

 0352
 11.64
 150.73

 0352
 11.64
 150.73

 0352
 11.64
 150.73

 0352
 11.64
 150.73

 0352
 11.65
 5.277

 0365
 5.397
 7.107
 6.391

 D
 J.3659
 V_2524

 mgl.
 mgl.
 mgl.

 .0717
 .0038
 .0447
 .0032

 .0447
 .0032
 .06447
 .0032

 .04621
 .0032
 .0550
 .0014

 .0550
 .0015
 .0550
 .0015

 .0550
 .0015
 .0550
 .0013

 .0556
 .0013
 .0106
 .0013

 .0556
 .0013
 .02636
 .0011

 .0556
 .0013
 .0213
 .0225

 .0124
 .0215
 .0214
 .0215

 .0172
 .0055
 .0025
 .0228

 Ag1289
 Ag3382
 Al3844

 mgL
 mgL
 mgL

 0.004
 0.316
 1.080

 0.004
 0.316
 1.080

 0.004
 0.316
 1.080

 0.001
 0.306
 2.221

 0.0000
 0.289
 0.737

 0.0010
 0.289
 0.737

 0.0020
 0.308
 0.629

 0.0010
 0.309
 0.644

 0.0010
 0.308
 0.598

 0.0021
 0.239
 0.598

 0.0022
 0.274
 0.011

 0.0010
 0.283
 0.638

 0.0010
 0.283
 0.633

 Gu3247
 Cu3273
 Fe2382

 mgL
 mgL
 mgL

 0101
 0.014
 0.014

 0010
 0.014
 0.014

 0010
 0.014
 0.014

 0010
 0.014
 0.014

 0010
 0.010
 0.010

 0.010
 0.010
 0.014

 0.010
 0.010
 0.016

 0.001
 0.021
 0.002

 0.004
 0.004
 0.038

 0.005
 0.011
 0.046

 0.006
 0.003
 0.038

 0.006
 0.003
 0.038

 0.006
 0.003
 0.038

 0.006
 0.003
 0.038

 0.006
 0.003
 0.038

 0.006
 0.001
 0.026

 0.007
 0.002
 0.081

 0.008
 0.003
 0.038

 0.009
 0.001
 0.020

 0.000
 0.002
 0.081

 Sr4215
 Th2837

 mgl.
 rgll.

 S377
 .018

 S376
 .0035

 S106
 .0017

 S121
 .0006

 4560
 .0006

 4524
 .0008

 4520
 .0008

 4524
 .0018

 4460
 .0014

 4460
 .0014

 4460
 .0014

 4461
 .0145

 4462
 .0032

 8452
 .0023

 8452
 .0023

 8452
 .0025

 .0142
 .0035

 .0122
 .8643

 Ti2767
 U_3670

 mg/L
 mg/L

 0400
 0026

 0330
 0096

 0530
 0096

 0501
 0073

 0216
 -0018

 03065
 00074

 03122
 0087

 0328
 -0012

 0328
 -0012

 0328
 -0012

 0553
 -0014

 0553
 -0012

 0553
 -0014

 0553
 -0015

 V_3083
 V_3102

 mgL
 mgL

 0439
 0344

 0434
 0025

 0400
 0025

 0401
 0025

 0404
 0025

 0404
 0025

 0344
 0025

 0344
 0025

 0344
 0025

 0344
 0026

 0344
 0026

 0345
 -0005

 0346
 -0035

 0347
 -0035

 0381
 -0034

 0381
 -0010

 0482
 -0010

 Zn2025
 Zn2138

 mglL
 mgL

 0.0386
 0.0421

 0.0111
 0.140

 0.0123
 0.127

 0.0585
 0.067

 0.0586
 0.067

 0.0585
 0.067

 0.0587
 0.946

 0.0587
 0.946

 0.0587
 0.946

 0.0597
 0.966

 0.0733
 0.066

 0.072
 0.106

 0.072
 0.106

 0.072
 0.106

 0.072
 0.006

 0.072
 0.106

 0.073
 0.014

 0.011
 0.115

 0.0036
 0.0174

 As1800
 As1820

 mg/L
 mg/L

 0.052
 .0061

 0.052
 .0061

 0.062
 .0024

 .0023
 .0024

 .0024
 .0023

 .0038
 .0067

 .0038
 .0067

 .0038
 .0020

 .0010
 .0020

 .0023
 .0010

 .0010
 .0020

 .0023
 .0011

 .0024
 .0020

 .0025
 .0016

 .0020
 .0010

 .0021
 .0010

 .0022
 .0010

 .0023
 .0011

 .0024
 .0013

 .0025
 .0016

 .0026
 .0016

 .0027
 .0016

 .0028
 .0017

 0
 Mo2810
 Na5839

 mgl.
 rg8.
 rg8.

 0.046
 223.9
 rg8.

 0.024
 201.0
 rg8.4

 0.017
 165.7
 rg8.4

 0.0201
 215.1
 rg8.4

 0.017
 165.2
 rg8.1

 0.0201
 157.0
 rg8.1

 0.0121
 155.3
 rg8.2

 0.0354
 163.3
 rg8.4

 0.0354
 163.3
 rg8.4

 0.0354
 163.3
 rg8.6

 0.0354
 163.3
 rg8.6

 0.0354
 163.3
 rg8.6

 0.0354
 163.4
 rg8.6

 Sb2175
 Se1960

 mglL
 mglL

 0004
 .0057

 .0013
 .0057

 .0014
 .0057

 .0017
 .0038

 .0017
 .0039

 .0017
 .0030

 .0017
 .0031

 .0017
 .0027

 .0017
 .0027

 .0017
 .0027

 .0015
 .0017

 .0016
 .0017

 .0017
 .0029

 .0018
 .0015

 .0014
 .0021

 .0015
 .0012

 .0016
 .0012

 .0017
 .0021

 .0018
 .0011

 .0014
 .0021

 .0015
 .0011

 .0014
 .0013

 .0038
 .0011
 Al3961 m9%. .0619 .1691 .0483 .0207 .0288 .0207 .0153 .0068 .0094 .0094 .0094 .0095 .0005 .0005 .0005 .0005 .0005 .0005 I-LIG707 mg/L .1994 2047 .1787 .1787 .1787 .1787 .1787 .1882 .1435 .1435 .1435 .1435 .1421 .1435 .1421 .1447 .1447 .0428 .1387 .0351 0 111908 mg/L .0013 .0017 .0019 .0018 .0038 .0034 .0034 .0033 .0035 .0034 .0025 .0034 .0025 .0034 .0025 .0034 .0025 .0035 .0035 .0036 .0036 .0036 .0036 .0036 .0036 .0037 .0036 .0037 .0036 .0037 5 Ba4534 mg%, 1861 1040 13552 1403 1233 1107 1076 2015 1402 1020 1846 1193 0915 1462 1193 0915 1463 Pe2395 mg/L .0718 .1757 .0449 .0355 .0590 .0360 .0317 .0347 .0434 .0391 .0291 .0207 .0208 .0291 .0207 .0208 .0040 .0066 1 552066 mg/L .0014 .0035 .0028 .0028 .0026 .0024 .0016 .0024 .0016 .0026 .0023 .0027 .0022 .0022 .0022 .0027 .0017 .0012 5e203 mgl. .0120 .0047 .0106 .0075 .0032 .0039 .0155 .0043 .0012 .0123 .0018 .0105 .0056 .0066 .0066 .0064 564077 mg/L 5642 5345 5382 5501 4733 4456 4900 4623 4656 4433 4656 4434 4215 4341 8574 4357 5850 8729 mg/L 1913 1072 1400 1445 1261 1140 1111 10239 1423 1038 1110 1059 1795 1168 1168 1175 mg%_ 0353 0091 .0061 .0478 .0138 .0018 .0018 .0006 .0056 .0056 .0058 .0058 .0058 .0058 .0058 .0059 .0058 ROOS 1A ROOS 1B ROOS 2B APA 1A APA 1B APA 1A APA 1B APA 2A CAN 1B CAN 1B CAN 2B CAN 2B CAN 2B R1 R10 R25 R2A ICP-MS Quarterly ROOS 1A ROOS 20 ROOS 20 APA 1A APA 2B CAN 1B CAN 1A CAN 2A CAN 2A ROOS 22 APA 1A CAN 2A CAN 2B R3 R10 R2A R2A
 98e
 27Ai

 ppb
 ppb

 2
 0.38
 46.29

 2
 0.168
 98.27

 5
 0.602
 33.66

 6
 0.107
 32.22

 1
 0.02
 34.69

 6
 0.017
 32.22

 1
 0.012
 25.67

 0
 0.032
 11.66

 0
 0.035
 10.12

 1
 0.003
 11.266

 1
 0.003
 10.14

 5
 -0.005
 12.46

 5
 -0.005
 12.64

 6
 -0.035
 12.64

 TSAs
 1230 (mode)
 1330 (mode)
 13300 (mode)
 1330
 13300<
 107Ag
 111Cd

 ppb
 ppb

 0.047
 0.456

 0.013
 0.101

 0.0047
 0.058

 0.005
 0.058

 0.005
 0.058

 0.005
 0.058

 0.005
 0.058

 0.005
 0.058

 0.005
 0.054

 0.005
 0.054

 0.005
 0.024

 0.002
 0.103

 0.002
 0.003

 0.004
 0.003

 0.004
 0.004

 0.004
 0.004

 0.004
 0.004

 0.004
 0.004

 0.004
 0.004

 0.004
 0.004

 0.005
 0.004

 0.004
 0.004

 0.005
 0.002

 1218b
 1598ba
 1

 0.716
 200.7
 100.1

 0.772
 100.1
 200.7

 0.275
 190.6
 202.7

 0.275
 190.6
 202.7

 0.172
 145.3
 202.7

 0.171
 162.2
 20.1

 0.187
 727.7
 0.171

 0.186
 152.8
 0.163

 0.181
 14.8
 190.3

 0.184
 152.8
 0.163

 0.139
 190.3
 0.332

 0.326
 132.9
 102.8
 7Li : 147.2 146.2 134.5 133.1 111.6 111.6 109.3 106.3 106 106.1 107.1 35.47 105.5 29.547 20.547 105.5 20.547 105.5 20.547 105.5 20.547 2 95Mo ppb 3.288 1.901 1.635 1.569 1.469 1.449 1.42 1.354 1.362 1.354 1.364 1.363 3.541 1.503 2.478 3.349