REGIONAL WATER QUALITY NEWSLETTER

DATE: Report for July 2007 Samples Collected on July 9-10, 2007 From the Phoenix, Tempe, Peoria, CAP, SRP – ASU Regional Water Quality Partnership

http://enpub.fulton.asu.edu/pwest/tasteandodor.htm

DISTRIBUTION: Phoenix: Greg Ramon, Walid Alsmadi, Edna Bienz, Frank Blanco, Alice.Brawley-Chesworth, Paul Burchfield, Jennifer Calles, Aimee Conroy, Mark Roye, Tom Doyle, Ron Jennings, Francisco Gonzales, Randy Gottler, Yu Chu Hsu, Maureen Hymel, Ron Jennings, Tom Martin, Shan Miller, Erin Pysell, Paul Mally, Matt Palencia, Chris Rounseville, Raymond Schultz, Bonnie Smith, Jeff Van Hoy, Brian Watson; SRP: Gregg Elliott, Brian Moorehead, Rick Prigg: CAWCD: Doug Crosby, Patrick Dent, Brian Henning, Tim Kacerek; Steve Rottas; Tempe: Tom Hartman; Michael Bershad, Grant Osburn, Sherman McCutheon.; Scottsdale: Michelle DeHaan,, B. Vernon; Suzanne Grendahl; Gilbert: Antonio Trejo, Bill Taylor; Glendale: Tracey Hockett, Usha Iyer, Stephen Rot, Kim Remmel, Tracy Hockett; Mesa: Alan Martindale; Charolette Jones; William Hughes; Matt Rexing Peoria: John Kerns, Dave Van Fleet, Linda Wahlstrom; Chandler: Lori Mccallum, Robert Goff, Victoria Sharp, Jackie Strong, Chris Kincaid, Wendy Chambers; Tucson: Michael Dew. American Water: Jeff Stuck, Nina Miller Chaparral City Water Company (CCWC): Bob Carlson Consultants: G. Masseeh, S. Kommineni (Malcom Pirnie); Warren Swanson (Schmueser Gordon Meyer, Inc., Colorado); Troy Day (CZN); Vance Lee, Bob Ardizzone (Carollo Engineering); Paul Westcott, Applied Biochemists, Shugen Pan, Greeley and Hanson, Larry Baker; ASU Team: Paul Westerhoff, Marisa Masles, KC Kruger, Hu Qiang, Milt Sommerfeld, Tom Dempster, Paul Westerhoff, EPA: Marvin Young; DEQ, Casey Roberts

If you wish to receive the *Newsletter* and are not on our list, send your email address to Dr. Paul Westerhoff (p.westerhoff@asu.edu) get a free "subscription".

SUMMARY: EVALUATION AND RECOMMENDATIONS

- 1. MIB is now present in the Arizona Canal at > 10 ng/L a level detectable by consumers. Their appears to be a "front" of MIB moving down through the Arizona Canal. ASU will follow-up with some additional sampling in 2 weeks rather than waiting until August to provide additional data to support your operations.
- While visiting a hotel on 7th Street near Shea Blvd in Phoenix, the hot water system clearly contained geosmin noticeable to my taste.
- 3. The CAP canal has low MIB and geosmin concentrations, but there is a low percentage of CAP water flowing into the South or Arizona Canals to dilute MIB SRP water coming primarily from the Salt River system (released from the bottom hypolimnion of Saguaro Lake).
- 4. For S. Tempe WTP there appears to be in-plant formation of geosmin. This has occurred several years ago. The use of periodic prechlorination was used at the time to control in-plant algae growth. This topic is the focus of a current AwwaRF project by Malcolm Pirnie/ASU (Sommerfeld): http://www.awwarf.org/research/TopicsAndProjects/projectSnapshot.aspx?pn=3111
- 5. For N. Tempe WTP in-plant T&O production may also be occurring.
- 6. A link for an update on Zebra mussels in the CAP system is attached below
- 7. DBP work continues and ASU will prepare a final report on DBP formation in SRP reservoirs, after coagulation treatment, and subsequent data modeling near the end of August 2007.

Table 1 Summary of WTP Operations

Table I Sullin			ci aciono					 1
	Union Hills	24 th Street WTP	N.Tempe J.G. Martinez	Deer Valley	Greenway WTP	Val Vista	South Tempe	Chandler WTP
Location	САР		rizona Ca	anal Syste	em	South (South Canal System	
PAC Type and Dose	None	Norit 20B 10 ppm	Hydro- darco O 17.3 ppm	Norit 20B 10.8 ppm	None	Norit 20B 10 ppm	None	no ne
Copper Sulfate	None	None	None	None	None	0.25 ppm	None	
PreOxidation	None	None	None	None	2 mg/L ozone		None	
Alum Dose Alkalinity pH	11.8 ppm ¹ 136/122 7.0	45 ppm 140/118 6.75	35 ppm 7.37	45 ppm 140/112 6.75	36 ppm 143 ppm 7.23	51 ppm 150 ppm 6.8	17 ppm 140 ppm 7.57	
Finished water DOC DOC removal ²	2.6 mg/L 17%	3.3 mg/L 31%	4.1 mg/L 17%	3.3 mg/L 31%	2.3 mg/L 44%	3.3 mg/L 30%	4.2 mg/L 7%	
WTP plant comments			We have receive d T&O compla ints.					
Recommend- ations			Consider one-time pre-Cl2 to kill algae causing in-plant geosmin release				This is a very low alum dose and consequentl y low DOC removal Consider one-time pre-Cl2 to kill algae causing in- plant geosmin release	

 ¹ Ferric chloride instead of alum
 ² Calculated based upon influent and filtered water DOC (note that DOC – not TOC – is used in this calculation)

³ Also adding 4.4 mg/L floc aid

Sample Description	MIB (ng/L)	Geosmin (ng/L)	Cyclocitral (ng/L)
24 th Street WTP Inlet	4.4	<2.0	<2.0
24 th Street WTP Treated	3.2	<2.0	<2.0
Deer Valley Inlet	3.5	<2.0	<2.0
Deer Valley WTP Treated	3.8	<2.0	<2.0
Val Vista Inlet	4.8	<2.0	<2.0
Val Vista WTP Treated –East	3.0	<2.0	<2.0
Val Vista WTP Treated -West	3.7	<2.0	<2.0
Union Hills Inlet	<2.0	<2.0	<2.0
Union Hills Treated	<2.0	<2.0	<2.0
Tempe North Inlet	5.0	<2.0	<2.0
Tempe North Plant Treated	12.1	5.8	4.4
Tempe South WTP	8.4	3.9	2.1
Tempe South Plant Treated	8.3	6.3	2.1
Greenway WTP Inlet	5.7	4.8	3.7
Greenway WTP Treated	<2.0	<2.0	<2.0

Table 2 - Water Treatment Plants – July 9, 2007

For <u>S. Tempe WTP</u> there appears to be in-plant formation of geosmin. This has occurred several years ago. The use of periodic prechlorination was used at the time to control in-plant algae growth. This topic is the focus of a current AwwaRF project by Malcolm Pirnie/ASU (Sommerfeld): http://www.awwarf.org/research/TopicsAndProjects/projectSnapshot.aspx?pn=3111

For <u>N. Tempe WTP</u> in-plant T&O production may also be occurring.

System	Sample Description	MIB (ng/L)	Geosmin	Cyclocitral
			(ng/L)	(ng/L)
CAP	Waddell Canal	<2.0	<2.0	2.4
	Union Hills Inlet	<2.0	<2.0	<2.0
	CAP Canal at Cross-connect	<2.0	3.5	5.4
	Salt River @ Blue Pt Bridge	18.8	3.9	3.7
	Verde River @ Beeline	10.8	8.4	6.3
AZ	AZ Canal above CAP Cross-connect		site not	available this
		Access to .	•	month
Canal	AZ Canal below CAP Cross-connect	14.7	5.0	5.9
	AZ Canal at Highway 87	10.8	5.8	6.1
	AZ Canal at Pima Rd.	15.3	5.0	3.9
	AZ Canal at 56th St.	10.7	4.9	4.1
	AZ Canal - Inlet to 24 th Street WTP	4.4	<2.0	<2.0
	AZ Canal - Central Avenue	9.3	6.3	4.5
	AZ Canal - Inlet to Deer Valley WTP	3.5	<2.0	<2.0
	AZ Canal - Inlet to Greenway WTP	5.7	4.8	3.7
South	South Canal below CAP Cross-connect	13.6	5.7	5.7
and	South Canal at Val Vista WTP	4.8	<2.0	<2.0
Tempe	Head of the Tempe Canal	6.7	5.3	5.9
Canals	Tempe Canal - Inlet to Tempe's South			
	Plant	8.4	3.9	2.1
]		

Table 3 - Canal Sampling – July 9, 2007

MIB is now present in the Arizona Canal at > 10 ng/L - a level detectable by consumers. Their appears to be a "front" of MIB moving down through the Arizona Canal. Based upon SRP websites, there were no wells operating between 56th street and 24th street that would have diluted the MIB. Wells were operating between Deer Valley WTP (24th street) and Peoria's Greenway WTP.

The CAP canal has low MIB and geosmin concentrations, but there is a low percentage of CAP water flowing into the South or Arizona Canals to dilute MIB SRP water coming primarily from the Salt River system (released from the bottom – hypolimnion – of Saguaro Lake).

Sample Description	Location	MIB (ng/L)	Geosmin (ng/L)	Cyclocitral (ng/L)
Lake Pleasant (July 3, 2007)	Eplimnion	<2.0	<2.0	4.5
Lake Pleasant	Hypolimnio	<2.0	<2.0	2.3
Verde River @ Beeline		5.6	12.3	4.1
Bartlett Reservoir	Epilimnion	21.7	<2.0	3.5
Bartlett Reservoir	Hypolimnio	11.1	<2.0	2.5
Salt River @ BluePt Bridge		18.8	3.9	3.7
Saguaro Lake	Epilimnion	9.7	190	4.7
Saguaro Lake	Epi -	11.3	161	5.1
Saguaro Lake	Duplicate Hypolimnio	11.5	4.8	2.9
Verde River at Tangle (June 27, 2007)		5.6	12.3	4.1
Havasu (July 3, 2007)		<2.0	<2.0	<2.0

Table 4 - Reservoir Samples – July 10, 2007

Geosmin concentrations are VERY high in the near-surface waters of Saguaro Lake, and continues an unusual seasonal trend that has not previously be observed in the reservoir over the past 8 years. This year we have very high geosmin concentrations, that can decrease rapidly and appear a month later. This may pose a serious problem when Saguaro Lake thermally destrafies and mixes with depth – usually the end of September or early October. Right now the Saguaro Lake is weakly thermally stratified – see graph below. This is weak stratification is typical for Saguaro Lake because of upstream SRP operations. Bartlett lake exhibits a more common, strong thermally stratified profile (see below). The shall secchi disk depth in Saguaro lake is also an indicator of a high level of algal biomass in the water column near the surface.

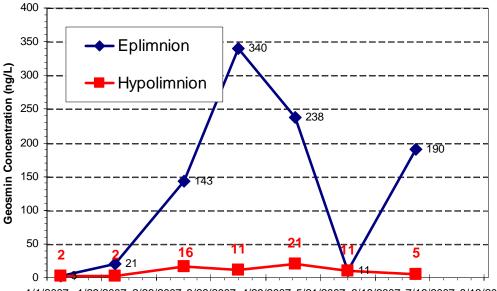


 Table 5 - SRP/CAP OPERATIONS

 Values in cfs
 for July 9, 2007

System	SRP Diversions	САР
Arizona Canal	855	42
South Canal	742	41
Pumping	183	0
Total	1780	83

SRP is releasing water from both Verde and Salt River Systems. Salt River release from Saguaro Lake: 1540 cfs; Verde River release from Bartlett Lake: 139 cfs.

Sample Description	DOC (mg/L)	UV254 (1/cm)	SUVA	TDN
24 th Street WTP Inlet	5.34	0.102	1.9	0.375
24 th Street WTP Treated	3.71	0.048	1.3	0.356
Deer Valley Inlet	5.37	0.098	1.8	0.392
Deer Valley WTP Treated	3.72	0.050	1.3	0.329
Val Vista Inlet	5.24	0.094	1.80	0.429
Val Vista WTP Treated –East	3.61	0.044	1.22	0.370
Val Vista WTP Treated -West	3.77	0.054	1.44	0.371
Union Hills Inlet	3.52	0.045	1.28	0.437
Union Hills Treated	2.92	0.026	0.87	0.379
Tempe North Inlet	5.50	0.101	1.84	0.497
Tempe North Plant Treated	4.56	0.072	1.58	0.350
Tempe South WTP	5.37	0.087	1.62	0.469
Tempe South Plant Treated	3.72	0.076	2.05	0.407
Chandler WTP Inlet				
Chandler WTP Treated				
Greenway WTP Inlet	4.66	0.084	1.8	0.487
Greenway WTP Treated	2.34	0.028	1.2	0.396

 Table 6 - Water Treatment Plants – July 9, 2007

DOC = Dissolved organic carbon

UV254 = ultraviolet absorbance at 254 nm (an indicator of aromatic carbon content) SUVA = UV254/DOC

TDN = Total dissolved nitrogen (mgN/L)

System	Sample Description	DOC	UV254	SUVA	
		(mg/L)	(1/cm)		TDN
CAP	Waddell Canal	3.69	0.047	1.28	0.434
	Union Hills Inlet	3.52	0.045	1.28	0.437
	CAP Canal at Cross-connect	3.57	0.044	1.22	0.426
	Salt River @ Blue Pt Bridge	5.50	0.098	1.79	0.437
	Verde River @ Beeline	2.41	0.098	4.08	0.273
AZ	AZ Canal above CAP Cross-connect				
Canal	AZ Canal below CAP Cross-connect	4.97	0.087	1.76	0.388
	AZ Canal at Highway 87	5.47	0.098	1.79	0.463
	AZ Canal at Pima Rd.	6.00	0.099	1.65	0.508
	AZ Canal at 56th St.	5.39	0.100	1.85	0.418
	AZ Canal - Inlet to 24 th Street WTP	5.35	0.102	1.90	0.375
	AZ Canal - Central Avenue	5.28	0.099	1.87	0.374
	AZ Canal - Inlet to Deer Valley WTP	5.37	0.098	1.82	0.392
	AZ Canal - Inlet to Greenway WTP	4.66	0.084	1.80	0.487
South	South Canal below CAP Cross-connect	5.41	0.098	1.82	0.452
and	South Canal at Val Vista WTP	5.24	0.094	1.80	0.429
Tempe	Head of the Tempe Canal	5.22	0.093	1.78	0.442
Canals	Tempe Canal - Inlet to Tempe's South Plant	5.07	0.087	1.72	0.469
	Chandler WTP – Inlet				

Table 7 - Canal Sampling - July 9, 2007

Table 8 - Reservoir Samples - July 9, 2007

Sample Description	Location	DOC (mg/L)	UV254 (1/cm)	SUVA	TDN
Lake Pleasant	Eplimnion	4.90	0.049	1.01	0.301
Lake Pleasant	Hypolimnion	4.62	0.053	1.15	0.410
Verde River @ Beeline		2.41	0.098	4.08	0.273
Bartlett Reservoir	Epilimnion	3.36	0.043	1.27	0.296
Bartlett Reservoir	Epi-near dock				
Bartlett Reservoir	Hypolimnion	3.25	0.042	1.30	0.274
Salt River @ BluePt Bridge		5.50	0.098	1.79	0.437
Saguaro Lake	Epilimnion	7.19	0.094	1.31	0.416
Saguaro Lake	Epi - Duplicate	7.35	0.093	1.27	0.325
Saguaro Lake	Epi-near doc				
Saguaro Lake	Hypolimnion	6.95	0.094	1.35	0.591
Verde River at Tangle		1.29	0.033	2.54	0.108
Havasu		4.43	0.048	1.08	0.563

Here is a quick update on the quagga mussel situation in the CAP:

We have visual confirmation now that CAP is infected with Quaggas at least through Brady's forebay. These confirmations have come from two independent sampling methods and a variety of samples. It's a safe bet that the entire system is infected. PCR (DNA) testing is promised within a few days.

Larry Riley at AZGF is planning to proceed with a public announcement.

CAP is collaborating with SRP, USBR, and other agencies to monitor the spread and investigate management techniques. Metropolitan Water District of California has a similar situation. They stated that inspections in late June indicate that the mussels have spread extremely rapidly with detection of quaggas now 125 miles west of their Intake plant and quantities of mussels near 500 per square meter were found at their Intake plant. The recent proliferation is attributed to the spring spawning of quagga mussels in Lake Mead.

Attached is a powerpoint file showing test plates installed at Parker Dam.

The July/August 2007 issue of *Southwest Hydrology* has a good background article on quaggas. See http://www.swhydro.arizona.edu/archive/V6_N4/dept-ontheground.pdf

As a reminder, quagga mussels pose no known threat to public health.

I will try to update you with more information from time to time as it becomes available.

Tim