REGIONAL WATER QUALITY NEWSLETTER

DATE: Report for June2011 Sampling conducted January – April 2011 A Tempe, Glendale, Peoria, CAP, SRP – ASU Regional Water Quality Partnership

http://enpub.fulton.asu.edu/pwest/tasteandodor.htm

What effects will the massive forest fires have on water quality?

Based upon impacts from the Rodeo-Chediski fires we could expect the following impacts on water quality in the Salt River flowing into Roosevelt Lake for the 1 year after the fire:

	% Change 1 year post-fire		
Constituent	Salt River		
Total Organic Carbon	2x to 10x increase		
Dissolved Organic Carbon	2x to 10x increase		
Total Phosphorus	>10x increase		
Dissolved Phosphorus	2x to 10x increase		
Total Nitrogen	>10x increase		
Ammonia	>10x increase		
Nitrate-Nitrite	2x to 10x increase		
Suspended Sediment	2x to 10x increase		
Stream Discharge	Slight decrease		

Source: Darla Gill MS Thesis ASU-2004 (supported by regional T&O funding)

Downloadable from: http://enpub.fulton.asu.edu/pwest/tasteandodor.htm

Quick Update of Water Supplies for June 2011 (during day of sampling – June 7, 2011)

Source	Trend in supply	Discharge to water supply system	Flow into SRP Canal System	MIB * (Geosmin) [Cyclocitrol] Concentration (ng/L)	Dissolved organic carbon Concentration (mg/L) ***
Salt River	Reservoirs at 90% full	1393 cfs	791 cfs into Arizona Canal 692 cfs into	9/3 (4/<2) [<2/<2]	5.3 mg/L
Verde River	Reservoirs At 34% full	150 cfs	South Canal 34 cfs of CAP	<2 (<2) [<2]	3.5 mg/L
Colorado River	Reservoirs at near historic lows (Lake Pleasant is nearly full)	3601 cfs from Colorado River (Lake Pleasant filling slowly at 5 cfs)	water into Arizona Canal 117 cfs	<2 (<2) [<2] < 2 **	3.5 mg/L
Groundwater	Generally increasing due to recharge	76 cfs pumping by SRP	Groundwater Pumping into SRP Canals		0.5 to 1 mg/L

^{*}Concentration of these taste and odor compounds in the upper / lower levels of the terminal reservoir (Saguaro Lake on the Salt River; Bartlett Lake on the Verde River; Lake Pleasant on the CAP system

SUMMARY: EVALUATION AND RECOMMENDATIONS

- 1. MIB plus geosmin levels above 10 ng/L in finished water lead to noticeable earthy-musty odors by customers. Currently MIB+geosmin levels are below 10 ng/L in the canals and treated water. However, concentrations are increasing already in Saguaro Lake. Cyclocitrol has been 5 to 10 ng/L for the past 3 months.
- 2. We discuss the effects of forest fires on water quality in the Salt River
- 3. We show long term trends in DOC concentrations in the reservoir systems as some cities consider ordering more CAP water, with lower DOC, into the SRP canal system.

^{**} Concentration of these taste and odor compounds in the CAP canal near 7th Street (Phoenix, AZ)

^{*}Concentration of DOC in the terminal reservoir

Taste and Odor Data

MIB plus geosmin levels above 10 ng/L in finished water lead to noticeable earthy-musty odors by customers. Currently MIB+geosmin levels are above 10 ng/L in the canals.

Water Supply Sources

June 7, 2011

Sample Description	Location	MIB (ng/L)	Geosmin (ng/L)
Lake Pleasant (May11)	Eplimnion	<2.0	<2.0
Lake Pleasant (May11)	Hypolimnion	<2.0	<2.0
Verde River @ Beeline			
Bartlett Reservoir	Epilimnion	9.0	3.3
Bartlett Reservoir	Epi-near dock	6.9	2.6
Bartlett Reservoir	Hypolimnion	<2.0	<2.0
Salt River @ BluePt Bridge		<2.0	<2.0
Saguaro Lake	Epilimnion	9.4	4.5
Saguaro Lake	Epi - Duplicate	9.0	4.2
Saguaro Lake	Epi-near dock	7.0	3.4
Saguaro Lake	Hypolimnion	2.8	<2.0
Lake Havasu (May11)		<2.0	<2.0

May 3, 2011

Sample Description	Location	MIB (ng/L)	Geosmin (ng/L)	Cyclocitral (ng/L)
Lake Pleasant (April11)	Eplimnion	<2.0	<2.0	<2.0
Lake Pleasant (April11)	Hypolimnion	<2.0	<2.0	<2.0
Verde River @ Beeline		<2.0	2.3	4.9
Bartlett Reservoir	Epilimnion	2.3	6.0	<2.0
Bartlett Reservoir	Epi-near dock	<2.0	<2.0	<2.0
Bartlett Reservoir	Hypolimnion	2.3	4.2	<2.0
Salt River @ BluePt Bridge		<2.0	<2.0	<2.0
Saguaro Lake	Epilimnion			
Saguaro Lake	Epi - Duplicate			
Saguaro Lake	Epi-near dock	13.0	<2.0	<2.0
Saguaro Lake	Hypolimnion			
Lake Havasu (April11)		<2.0	<2.0	<2.0
Verde River at Tangle Creek (Mar11)		<2.0	2.2	<2.0

Concentrations of MIB in canals WTP locations were < 3 ng/L

(data available upon request)

Other T&O levels:

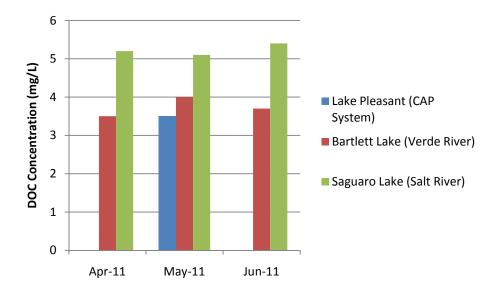
System	Sample Description	May-11	Jun-11
CAP	Waddell Canal	<2.0	<2.0
	Union Hills Inlet		
	CAP Canal at Cross-connect		
	Salt River @ Blue Pt Bridge	<2.0	3.4
	Verde River @ Beeline	<2.0	
ΑZ	AZ Canal above CAP Cross-connect	<2.0	5.0
Canal	AZ Canal below CAP Cross-connect	<2.0	7.1
	AZ Canal at Highway 87	<2.0	12.2
	AZ Canal at Pima Rd.	<2.0	6.3
	AZ Canal at 56th St.	<2.0	6.6
	AZ Canal - Central Avenue	<2.0	5.1
	AZ Canal - Inlet to Glendale WTP	6.0	<2.0
South	South Canal below CAP Cross-connect	6.1	6.7
Tempe	Head of the Tempe Canal	<2.0	4.2
Canals	Tempe Canal - Inlet to Tempe's South Plant	<2.0	<2.0

Organic Matter in Water Treatment Plants

Table 2 - Water Treatment	Plants –June 06	, 2011			
Sample Description	DOC (mg/L)	UV254 (1/cm)	SUVA (L/mg-m)	TDN	DOC removal (%)
Union Hills Inlet	3.40	0.05	1.45	0.45	
Union Hills Treated	2.99	0.03	0.99	0.42	12
Tempe North Inlet	4.65	0.09	1.86	0.35	
Tempe North Plant Treated	3.08	0.04	1.24	0.30	34
Tempe South WTP	4.28	0.08	1.96	0.28	
Tempe South Plant Treated	3.25	0.04	1.27	0.24	24
Greenway WTP Inlet	4.30	0.08	1.86	0.51	
Greenway WTP Treated	3.78	0.03	0.75	0.41	12
Glendale WTP Inlet	4.89	0.09	1.77	0.50	
Glendale WTP Treated	3.09	0.03	0.91	0.41	37

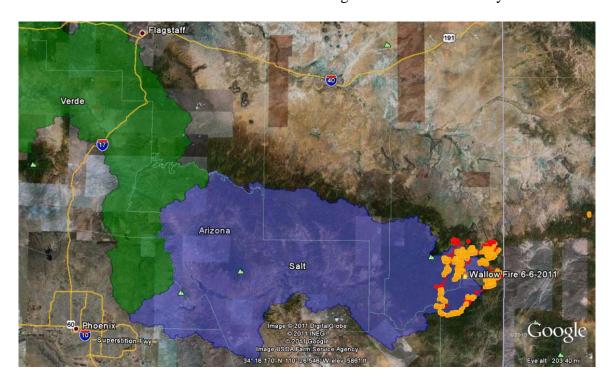
DOC = **Dissolved organic carbon**

UV254 = ultraviolet absorbance at 254 nm (an indicator of aromatic carbon content) SUVA = UV254/DOC


TDN = Total dissolved nitrogen (mgN/L)

Sample Description	DOC (mg/L)	UV254 (1/cm)	SUVA (L/mg-m)	TDN
Waddell Canal	3.40	0.05	1.45	0.45
Union Hills Inlet				
CAP Canal at Cross-connect				
Salt River @ Blue Pt Bridge	4.88	0.09	1.82	0.36
Verde River @ Beeline				
AZ Canal above CAP Cross-connect	4.71	0.09	1.84	0.32
AZ Canal below CAP Cross-connect	4.32	0.08	1.82	0.32
AZ Canal at Highway 87	4.69	0.08	1.78	0.30
AZ Canal at Pima Rd.	4.74	0.09	1.80	0.35
AZ Canal at 56th St.	4.57	0.08	1.86	0.35
AZ Canal - Inlet to 24 th Street WTP				
AZ Canal - Central Avenue	4.63	0.09	1.84	0.36
AZ Canal - Inlet to Deer Valley WTP				
AZ Canal - Inlet to Glendale WTP	4.89	0.09	1.77	0.50
AZ Canal - Inlet to Greenway WTP	4.30	0.08	1.86	0.51
South Canal below CAP Cross-connect	4.44	0.09	1.96	0.31
South Canal at Val Vista WTP				
Head of the Tempe Canal	4.36	0.08	1.93	0.44
Tempe Canal - Inlet to Tempe's South Plant	4.28	0.08	1.96	0.28

Organic Matter In Reservoirs


Sample Description	Location	DOC (mg/L)	UV254 (1/cm)	SUVA (L/mg-m)	TDN
Lake Pleasant (May 2011)	Eplimnion	3.41	0.05	1.44	0.46
Lake Pleasant (May 2011)	Hypolimnion	3.51	0.05	1.39	0.40
Verde River @ Beeline					
Bartlett Reservoir	Epilimnion	3.62	0.07	1.93	0.27
Bartlett Reservoir	Epi-near				
	dock				
Bartlett Reservoir	Hypolimnion	3.71	0.07	2.02	0.38
Salt River @ BluePt Bridge		4.88	0.09	1.82	0.36
Saguaro Lake	Epilimnion	5.60	0.09	1.61	0.42
Saguaro Lake	Epi -			1.65	
	Duplicate	5.39	0.09	1.65	0.42
Saguaro Lake	Epi-near doc				
Saguaro Lake	Hypolimnion	5.06	0.09	1.77	0.38
Verde River at Tangle					
Havasu (May 2011)		3.02	0.05	1.51	0.58

Four month Trend in DOC levels in the Reservoirs

Effects of 2011 Forest Fires on Water Quality

The map below shows the portion of the Salt River watershed burning as of June 6, 2011. The first has spread north and slightly southwest over the past week and burned more internal to the red outlined area. The Wallow fire is mostly within the Salt River watershed, and in the Black River subwatershed specifically. The Black River watershed is a productive area for water drainage from snowmelt and monsoons. This watershed is further away from Roosevelt Lake than the 2002 Rodeo-Chediski fire, but is still expected to release a "slug" of highly concentrated runoff when the monsoons start in July-September. As with the 2002 fires, there will not be a "slug" of nasty water coming to water treatment plants. Instead the "slug" will be diluted with water in Roosevelt and the other 4 reservoirs on the Salt River before being released into the Valley.

As a result of the Rodeo-Chediski fires in 2002 our team, funded by the regional water quality project, was able to conduct a 2 year study on the impacts of water quality on the Salt River watershed. Dramatic increases in DOC in the Salt River have been recognized (see next section) before/after these fires. This is due to two reasons. First, the drought itself kept organic matter on the watershed and out of the reservoir. When it rains organics are normally flushed into reservoirs. Prior to 2002 a prolonged drought had delivered less DOC essentially to the reservoirs. Second, runoff of nutrients, carbon and metals were definitely higher in the forest catchment on the Salt River than on the Verde River after the 2002 fires during the first few monsoon events. Then the watershed rapidly vegetated and started retaining sediments and nutrients. So moisture is good at solving the runoff problems. Details of our findings, and findings from a study we did

with partners in Colorado after a fire are available on our website as a MS thesis from Darla Gill 2004 (http://enpub.fulton.asu.edu/pwest/tasteandodor.htm)

Boundaries of the Rodeo-Chediski Fire in 2002 and area currently burning in the 2011 Wallow Fire. Runoff from the Wallow Fire will flow into the Black River which then enters the Salt River and flows into Roosevelt Reservoir.

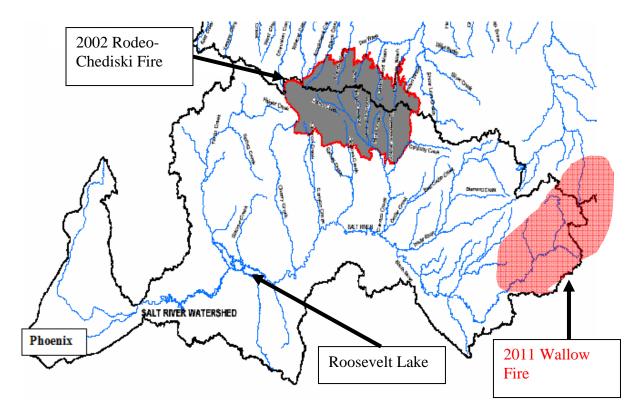
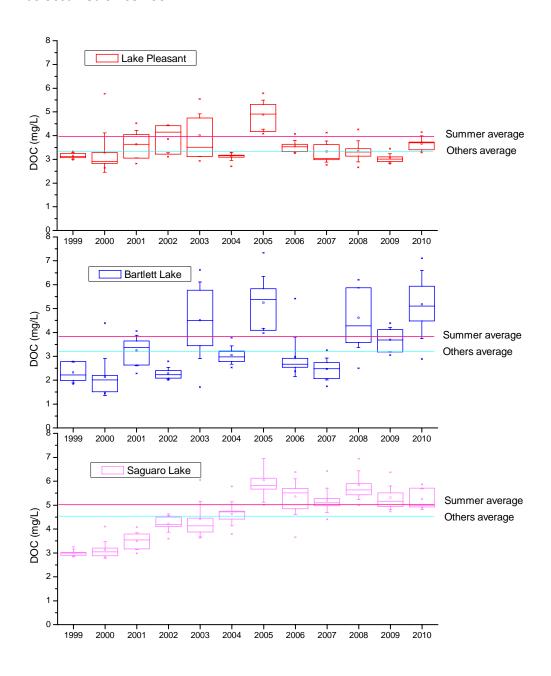



Table – Impacts of 2002 Rodeo-Chediski Fire on loadings into the Salt River Reservoir System

	% Change 1 year post-fire		
Constituent	Salt River		
Total Organic Carbon	2x to 10x increase		
Dissolved Organic Carbon	2x to 10x increase		
Total Phosphorus	>10x increase		
Dissolved Phosphorus	2x to 10x increase		
Total Nitrogen	>10x increase		
Ammonia	>10x increase		
Nitrate-Nitrite	2x to 10x increase		
Suspended Sediment	2x to 10x increase		
Stream Discharge	Slight decrease		

Long Term Trends in DOC For the Terminal Water Supply Reservoirs in metro-Phoenix

The graph below shows annual statistics in DOC levels for the 3 primary reservoir supplies. The bar and wisker diagrams show averages (middle line in box) and then different percentiles. Lake Pleasant is fairly constant, except in 2005 when heavy rains brought water and organics down the Aqua Fria River into Lake Pleasant. Bartlett Lake on the Verde River shows the greatest annual variability because of a lake of significant upstream storage to attenuate fluctuations from runoff. A gradual increase in DOC concentrations in Saguaro Lake, which is the lower most reservoir of 5 on the Salt River, has occurred since 2001.

