REGIONAL WATER QUALITY NEWSLETTER

DATE: Report for February 13-14, 2006 Samples Collected on February 16, 2006 From the Phoenix, Tempe, Peoria, CAP, SRP – ASU Regional Water Quality Partnership

PLEASE NOTE THE WEBADDRESS HAS CHANGED FOR OUR PROJECT: http://enpub.fulton.asu.edu/pwest/tasteandodor.htm

DISTRIBUTION: Phoenix: Greg Ramon, Robert Leible, Walid Alsmadi, Edna Bienz, Frank Blanco, Nicoleta Buliga, Natasha Bernard, Alice.Brawley-Chesworth, Paul Burchfield, Jennifer Calles, Aimee Conroy, Tom Doyle, Ron Jennings, Francisco Gonzales, Randy Gottler, Keith Greenburg, Mike Gritzuk, Yu Chu Hsu, Maureen Hymel, Ron Jennings, Tom Martin, Shan Miller, Erin Pysell, Paul Mally, Matt Palencia, Chris Rounseville, Raymond Schultz, Bonnie Smith, Jeff Van Hoy, Mike Welch Vic Vanderslice; SRP: Gregg Elliott, Brian Moorehead, Rick Prigg: CAWCD: Doug Crosby, Patrick Dent, Brian Henning, Tim Kacerek; Steve Rottas; Tempe: Tom Hartman; Michael Bershad, Grant Osburn, German McCutheon.; Scottsdale: Michelle DeHaan,, B. Vernon; Suzanne Grendahl; Gilbert: Antonio Trejo, Bill Taylor; Glendale: Tracey Hockett, Usha Iyer, Stephen Rot, Kim Remmel, Tracy Hockett; Mesa: Alan Martindale; Charolette Jones; William Hughes; Matt Rexing Peoria: John Kerns, Dave Van Fleet, Linda Wahlstrom; Chandler: Lori Mccallum, Robert Goff, Victoria Sharp, Jackie Strong, Chris Kincaid, Wendy Chambers; Tucson: Michael Dew. American Water: Jeff Stuck, Nina Miller Chaparral City Water Company (CCWC): Bob Carlson Consultants: G. Masseeh, S. Kommineni (Malcom Pirnie); Warren Swanson (Schmueser Gordon Meyer, Inc., Colorado); Troy Day (CZN); Vance Lee, Bob Ardizzone (Carollo Engineering); Paul Westcott, Applied Biochemists, Shugen Pan, Greeley and Hanson, Larry Baker; ASU Team: Mario Esparza, Marisa Masles, Darla Gill, Hu Qiang, Milt Sommerfeld, Tom Dempster, Paul Westerhoff, EPA: Marvin Young; DEQ, Casey Roberts

If you wish to receive the *Newsletter* and are not on our list, send your email address to Dr. Paul Westerhoff (p.westerhoff@asu.edu) get a free "subscription".

SUMMARY: EVALUATION AND RECOMMENDATIONS

- 1. The reservoirs are not yet thermally stratified
- 2. MIB and geosmin concentrations are low throughout the water supply system
- 3. This year we are including DOC data and a section on predicting relative DBP trends comments are welcome: tell us what you would like to see.
- 4. A final section evaluates how T&O can be produced in water distribution systems.
- 5. Thanks to everyone's interest and continued involvement funding has been approved from all participating agencies through all or at least part of 2006 already.

	Union Hills	56 th Street WTP	North Tempe	Deer Valley	Peoria WTP	Val Vista	South Tempe	Chandler WTP
Location	CAP	Ari	izona C	anal System	-	South Canal system		
PAC Type and	No	No		No		Norit 20b	No	
Dose						2.55ppm		
						old PAC		
Copper Sulfate	No	No		No		No	No	
PreOxidation	No	No		No		2.25 ppm	1.2 ppm	
						Cl2 24/7	NaOCl	
Alum Dose	15 ppm	35 ppm		10/25 ppm		38 ppm	26.1 ppm	
Alkalinity	137 ppm	220		212/162ppm		202 ppm	212 ppm	
рН	7.5	7.0		7.00		8.1	8.11	
WTP	No T&O	No T&O		No T&O		No T&O	No T&O	
Comments	complaints	complaints		complaints		complaints	complaints	
Process			Off-		Plant			
Recomendations			line		is off-			
			until		line			
			April		until Ech			
					15 th			

 Table 1 Summary of WTP Operations

Jennifer Calles/City of Phoenix stated that they City received ~ 60 complaints in January. It was unclear if these were all T&O related, and if so how many were earthy-musty, or if it was associated with changes in water quality due to canal shutdowns/maintanence.

MONITORING RESULTS Table 2 - Water Treatment Plants – February 13, 2006

Sample Description	MIB (ng/L)	Geosmin (ng/L)	Cyclocitral (ng/L)
24 th Street WTP Inlet	3.0	2.9	<2.0
24 th Street WTP Treated	2.4	3.2	<2.0
Deer Valley Inlet	2.5	2.9	<2.0
Deer Valley WTP Treated	3.0	3.7	<2.0
Val Vista Inlet	<2.0	3.4	<2.0
Val Vista WTP Treated –East	<2.0	3.4	<2.0
Val Vista WTP Treated -West	1		
Union Hills Inlet	<2.0	2.3	<2.0
Union Hills Treated	<2.0	2.9	<2.0
Tempe North Inlet			
Tempe North Plant Treated	1		
Tempe South WTP	2.1	2.6	<2.0
Tempe South Plant Treated	2.4	3.2	<2.0
Chandler WTP Inlet	<2.0	<2.0	<2.0
Chandler WTP Treated	<2.0	<2.0	<2.0
Greenway WTP Inlet			
Greenway WTP Treated]		

System	Sample Description	MIB (ng/L)	Geosmin	Cyclocitral	
			(ng/L)	(ng/L)	
CAP	Waddell Canal	<2.0	2.5	<2.0	
	Union Hills Inlet	<2.0	2.3	<2.0	
	CAP Canal at Cross-connect	2.8	2.8	<2.0	
	Salt River @ Blue Pt Bridge	2.7	3.5	<2.0	
	Verde River @ Beeline	2.6	3.0	<2.0	
AZ	AZ Canal above CAP Cross-connect				
Canal	AZ Canal below CAP Cross-connect	3.0	3.1	<2.0	
	AZ Canal at Highway 87	<2.0	3.4	<2.0	
	AZ Canal at Pima Rd.	<2.0	3.4	<2.0	
	AZ Canal at 56th St.	2.1	3.7	<2.0	
	AZ Canal - Inlet to 24 th Street WTP	3.0	2.9	<2.0	
	AZ Canal - Central Avenue	<2.0	3.3	<2.0	
	AZ Canal - Inlet to Deer Valley WTP	2.5	2.9	<2.0	
	AZ Canal - Inlet to Greenway WTP	3.0	3.7	<2.0	
South	South Canal below CAP Cross-connect	3.0	3.1	<2.0	
and	South Canal at Val Vista WTP	2.0	2.7	<2.0	
Tempe	Head of the Tempe Canal	2.2	2.4	<2.0	
Canals	Tempe Canal - Inlet to Tempe's South]			
	Plant	2.1	2.6	<2.0	
	Chandler WTP – Inlet	<2.0	<2.0	<2.0	

 Table 3 - Canal Sampling – February 13, 2006

Sample Description	Location	MIB (ng/L)	Geosmin (ng/L)	Cyclocitral (ng/L)
Lake Pleasant (January)	Eplimnion	2.2	2.2	<2.0
Lake Pleasant	Hypolimnio	2.7	<2.0	<2.0
Lake Pleasant (February)	Eplimnion	<2.0	<2.0	<2.0
Lake Pleasant	Hypolimnio	2.1	<2.0	<2.0
Verde River @ Beeline		2.7	3.5	<2.0
Bartlett Reservoir	Epilimnion	<2.0	2.8	<2.0
Bartlett Reservoir	Epi-near			
	dock	<2.0	3.1	<2.0
Bartlett Reservoir	Hypolimnio	<2.0	2.3	<2.0
Salt River @ BluePt Bridge		2.7	3.5	<2.0
Saguaro Lake	Epilimnion	<2.0	2.9	<2.0
Saguaro Lake	Epi - Duplicate	<2.0	3.0	<2.0
Saguaro Lake	Epi-near doc	<2.0	3.1	<2.0
Saguaro Lake	Hypolimnio	<2.0	4.7	<2.0
Verde River at Tangle (January)		4.2	3.5	<2.0
Havasu (January)		<2.0	2.7	<2.0
Havasu (February)		<2.0	3.8	<2.0

Table 4 - Reservoir Samples – February 14, 2006

Table 5 - SRP/CAP OPERATIONS

Values in cfs, for February 13, 2006

System	SRP	CAP		
	Diversions			
Arizona Canal	348	0		
South Canal	379	0		
Pumping	59	0		
Total	786	0		

SRP is releasing water from both Verde and Salt River Systems. Salt River release from Saguaro Lake: 8 cfs; Verde River release from Bartlett Lake: 817 cfs. Horseshoe Lake is at 0% capacity.

New Section- Understanding and Monitoring for DBPs

Once a month we will try to expand on our current monitoring data and understanding of DBP predictions. DOC and UVA254 data for select sites are presented below. As a tool we are starting to calibrate a "representative" WTP using a EPA tool (WTP.exe). Any comments you have will be incorporated into next months version.

Water Quality Summary for Raw, Finished, and Distributed Water At Plant Flow (10.0 MGD) and Influent Temperature (12.0 C)									
Parameter	Units	Raw Water	Effluent	Avg. Tap	End of Sys				
рН	(–)	8.0	7.3	7.3	7.3				
Alkalinity	(mg/L as CaCO3)	200	181	181	181				
TOC	(mg/L)	3.0	2.5	2.5	2.5				
UV	(1/cm)	0.060	0.029	0.029	0.029				
(T)SUVA	(1/cm)	2.0	1.1	1.1	1.1				
Ca Hardness	(mg/L as CaCO3)	100	100	100	100				
Mg Hardness	(mg/L as CaCO3)	20	20	20	20				
Ammonia-N	(mg/L)	0.01	0.00	0.00	0.00				
Bromide	(ug/L)	100	77	65	49				
Free Cl2 Res.	(mg/L as Cl2)	0.0	3.1	2.3	1.0				
Chloramine Res.	(mg/L as Cl2)	0.0	0.0	0.0	0.0				
TTHMs	(ug/L)	0	39	58	83				
HAA5	(ug/L)	0	38	46	55				
НААб	(ug/L)	0	46	56	67				
HAA9	(ug/L)	0	52	70	93				
TOX	(ug/L)	0	185	240	302				
Bromate	(ug/L)	0	0	0	0				
Chlorite	(mg/L)	0.0	0.0	0.0	0.0				
TOC Removal	(percent)		15						

Predicted Water Quality Profile

At Plant Flow (10.0 MGD) and Influent Temperature (12.0 C)

Location	рН (-)	TOC (mg/L)	UVA (1/cm)	(T)SUVA (L/mg-m)	Cl2 (mg/L)	NH2Cl (mg/L)	Residen Process (hrs)	ce Time Cum. (hrs)
Influent	8.0	3.0	0.060	2.0	0.0	0.0	0.00	0.00
Chlorine (Gas)	7.8	3.0	0.042	1.4	2.1	0.0	0.00	0.00
Alum	7.4	3.0	0.042	1.4	2.1	0.0	0.00	0.00
Rapid Mix	7.4	2.5	0.029	1.1	1.8	0.0	0.02	0.02
Flocculation	7.4	2.5	0.029	1.1	1.7	0.0	0.10	0.11
Settling Basin	7.4	2.5	0.029	1.1	1.6	0.0	0.40	0.51
Filtration	7.4	2.5	0.029	1.1	1.6	0.0	0.07	0.58
Ammonia	7.4	2.5	0.029	1.1	1.6	0.0	0.00	0.58
Chlorine (Gas)	7.3	2.5	0.029	1.1	4.1	0.0	0.00	0.58
Contact Tank	7.3	2.5	0.029	1.1	3.1	0.0	2.40	2.98
WTP Effluent	7.3	2.5	0.029	1.1	3.1	0.0	0.00	2.98
Average Tap	7.3	2.5	0.029	1.1	2.3	0.0	24.00	26.98
End of System	7.3	2.5	0.029	1.1	1.0	0.0	168.00	170.98

MIB Production in Water Distribution Systems (from Actinomycetes)

ASU and Phoenix are preparing an AwwaRF final report that in part looks at MIB production in distribution systems (after leaving the WTP). Experiments were conducted in a lab-setup continuous flow pipeloop system at ASU. The system receives City of Tempe tap water and has two parallel systems (1 PVC and 1 cast iron). Actinomyctes were spiked into the system, to simulate intrusion of soil or other events. Some representative and interesting data is included that may shed light onto how we treat T&O events that we think are caused by biofilms in the distribution system.

Figures A &B are for cast-iron pipeloops and C&D are for PVC pipe-loops. Chlorine was cycled in on-off modes for a few days to simulate parts of distribution systems with low chlorine residual. In the cast iron system the loss of chlorine resulted in an increase of actinomycetes in the flowing water. Subsequent chlorine addition reduced the number of actinomycetes in the flowing water, but increased MIB concentrations by 20 ng/L. So the chlorine inactivated the actinomycete, and as a consequence caused them to release MIB. The same pattern was observed in the PVC pipeloop.

What does this mean? If a utility has parts of a water distribution system with low chlorine residuals, cycles of chlorine-no chlorine exposure can be causing actinomcyetes in the biofilm and flowing water to proliferate and then release MIB when they become inactivated. This can lead to sudden spikes in MIB, which may not be present when cities collect samples from houses of customers that file complaints.

A. Concentrations of actinomycetes in flowing water in cast-iron during chlorination and rechlorination

B. Concentrations of MIB in flowing water in cast-iron during chlorination and rechlorination

C. Concentrations of actinomycetes in flowing water in PVC during chlorination and rechlorination

D. Concentrations of MIB in flowing water in PVC during chlorination and rechlorination