REGIONAL WATER QUALITY NEWSLETTER

DATE: Report for January 2009
Sampling conducted January 5-6 2009
A Phoenix, Tempe, Glendale, Peoria, CAP, SRP – ASU Regional Water Quality
Partnership

http://enpub.fulton.asu.edu/pwest/tasteandodor.htm

DISTRIBUTION: ACTarvers@FTMCDOWELL.ORG; mary.reker@phoenix.gov; knghiem@csaei.com; Kandis.Knight@asu.edu; gary_moore@tempe.gov; sandra_dewittie@tempe.gov; kspooner@citlink.net; bardizzone@carollo.com; wtrask@mwdh2o.com; jnafsey@mwdh2o.com; JJWilliams@GLENDALEAZ.com; raghunatha.komaragiri@phoenix.gov; mxerxis@scottsdaleaz.gov; mnguyen@ndep.nv.gov; RussellGRhodes@MissouriState.edu; paul.kinshella@phoenix.gov; brian.fayle@phoenix.gov; paul.zelenka@phoenix.gov; patricia.puryear@phoenix.gov Wontae.Lee@hdrinc.com; kjacobs@aq.arizona.edu; k_kruger@asu.edu; addotson@gmail.com; Hye.Moon@asu.edu; Pedram.Shafieian@asu.edu; Daisuke.Minakata@asu.edu; Billt@gilbert.az.us; paul.mally@phoenix.gov; Braden.Allenby@asu.edu; Rittmann@asu.edu; Jeffrey.Stuck@amwater.com; nina.miller@amwater.com; wayne.janis@asu.edu; jim.holway@asu.edu; gober@asu.edu; rscott@glendaleaz.com; safischer@fs.fed.us aimee.conroy@phoenix.gov; alan.martindale@cityofmesa.org; alice.brawley-chesworth@phoenix.gov; allison.shepherd@phoenix.gov; AGhosh@PIRNIE.COM; antoniot@ci.qilbert.az.us; anupa.jain@ci.chandler.az.us; arrw716@earthlink.net; awirtz@fs.fed.us; bakerenv@earthlink.net; bardizzone@carollo.com; bhenning@cap-az.com; btalabi@scottsdaleaz.gov; bkmoorhe@srpnet.com; BobCarlson@scwater.com; bonnie.smith@phoenix.gov; Bradley_fuller@tempe.gov; brian.fayle@phoenix.gov; brian.k.watson@phoenix.gov; carl.meyer@phoenix.gov; carlos.padilla@phoenix.gov; cseidel@dswa.net; Charolotte. Jones@cityofmesa.org; chennemann@carollo.com; chris.rounseville@phoenix.gov; Chris_Kincaid/COC@ci.chandler.az.us christenson.kara@epa.gov; CityofMesaWTP@compuserve.com; cwilson@scottsdaleaz.gov; D'Ann.O'Bannon@phoenix.gov; diwanski@goodyearaz.gov; davev@peoriaaz.com; dempster@asu.edu; dlopez@fs.fed.us; dorothyo@peoriaaz.com; drcrosby@cap-az.com; dwalker@Aq.arizona.edu dxprigge@srpnet.com; edna.bienz@phoenix.gov; erin.pysell@phoenix.gov; mario_esparza_soto@hotmail.com; francisco.gonzalez@phoenix.gov frank.blanco@phoenix.gov; giloomis@fs.fed.us; GMaseeh@PIRNIE.COM; Gregg.Elliott@srpnet.com; goelliot@srpnet.com; grant_osburn@tempe.gov; Greg.Ramon@Phoenix.Gov; gtday@amwater.com; GThelin@carollo.com; guy.carpenter@hdrinc.com; hugiang@asu.edu; Jackie.Strong@ci.chandler.az.us; jdoller@carollo.com; jeffrey.van.hoy@phoenix.gov; jennifer.calles@phoenix.gov; jjwilliams@glendaleaz.com; JohnRK@PeoriaAz.Com; osh_berdeaux@msn.com; kremmel@ci.glendale.az.us; Larry.Duffy@ci.chandler.az.us; laxman.devkota@phoenix.gov; Linda.Bezy-Bolma@peoriaaz.gov; Lori.mccallum@ci.chandler.az.us; lroberts@buckeyeaz.gov; luis.manriquez@phoenix.gov; Marisa.Masles@asu.edu; mark.roye@phoenix.gov; matthew.rexing@cityofmesa.org; maureen.hymel@phoenix.qov; mdehaan@dswa.net; Mdew1@mail.ci.tucson.az.us; mhelton@scottsdaleaz.qov Michael_Bershad@tempe.gov; Milton.Sommerfeld@asu.edu; matt.palenica@phoenix.gov; MURPHYSP@wattsind.com; nancy.milan@ci.chandler.az.us; nicholas.silides@cityofmesa.org; nicoleta.buliga@phoenix.gov; ANUNEZ@SCOTTSDALEAZ.GOV; paul.burchfield@phoenix.gov; anunez@scottsDaleaz.gov; anunez@scottsDaleaz.gov; anunez@scottsDaleaz.gov; anunez@scottsDaleaz.gov; anunez@scottsDaleaz.gov; anunez@scottsDaleaz.gov; anunez@scottsDaleaz.gov; anunez@scottsDaleaz.gov; anunez.gov; anunez.g paulwestcott@appliedbiochemists.com; pdent@cap-az.com; pfenner@fs.fed.us; Randy.Gottler@phoenix.gov; raymond.schultz@phoenix.gov robert.hollander@phoenix.gov; robert.goff@ci.chandler.az.us; robert_eck@ci.mesa.az.us; ron.jennings@phoenix.gov; rsgooch@srpnet.com; rscott@qlendaleaz.com; rcarpenter@qlendaleaz.com; sgrendahl@SCOTTSDALEAZ.GOV; shan.miller@phoenix.gov; sherman_mccutcheon@tempe.gov; SRot@ci.glendale.az.us; srottas@cap-az.com; sacquafredda@dswa.net; steven.schoen@phoenix.gov; susan.potter@phoenix.gov; tara_ford@tempe.gov; terrance.piekarz@phoenix.gov; tqilloqly@carollo.com; THockett@GLENDALEAZ.com; thomas.martin@phoenix.gov; thomasdempster@hotmail.com; tjeffer1@ci.tucson.az.us; tkacerek@cap-az.com; tom.doyle@phoenix.gov; Tom_Hartman@tempe.gov; troy.hayes@phoenix.gov; Victoria.Sharp@ci.chandler.az.us; vlee@carollo.com; waerma@bv.com; walid.alsmadi@phoenix.gov; warrens@sqm-inc.com; wendy.chambers@ci.chandler.az.us; wes.cannon@ci.chandler.az.us; wes.taylor@phoenix.gov; wtaylor@mwdh2o.com; William.Huqhes@cityofmesa.org; swilson@scottsdaleaz.gov; Youngll.Kim@asu.edu; yu.chu.hsu@phoenix.gov; LindaW@PeoriaAz.Com; Yongsheng.Chen@asu.edu; keli@asu.edu; icritt@asu.edu; uiyer@glendaleaz.com; Michael.Helton@amwater.com; Kim.Caggiano@cityofmesa.org; Keith.Greenberg@amwater.com; harry.brown@AMwater.com; mnguyen@ndep.nv.gov; bzachman@dswa.net; hdurbin@dswa.net; Tony.Mardam@ch2m.com; paul.zelenka@phoenix.qov; agrochowski@cap-az.com; bradley_fuller@tempe.gov; JBryck@PIRNIE.COM; Susanne.Neuer@asu.edu; Mohan.Seetharam@asu.edu; Chao-An.Chiu@asu.edu; susan.michael@peoriaaz.gov; tammy.perkins@phoenix.gov; Michael.Kennedy@cityofmesa.org; ZChowdhury@PIRNIE.COM; Shari.Lange@phoenix.gov; nmegonnell@calgoncarbon-us.com; Cynthia.Bain@peoriaaz.gov; Ryan.Rhoades@CH2M.com; jim.kudlinski@srpnet.com; Cynthia.Bain@peoriaaz.gov; Ryan.Rhoades@CH2M.com; jim.kudlinski@srpnet.com; Gambatese.Jason@epamail.epa.gov; charolotte.jones@phoenix.gov

If you wish to receive the *Newsletter* and are not on our list, send your email address to Dr. Paul Westerhoff (p.westerhoff@asu.edu) get a free "subscription".

SUMMARY: EVALUATION AND RECOMMENDATIONS

- 1. Welcome to 2009. We are fortunate to continue our project with funding from all supporting agencies. This newsletter includes some of our planned focuses for 2009.
- 2. WTPs on South canal are mostly down for maintenance.
- 3. T&O levels are low now in the winter
- 4. Water is being released from both Salt and Verde Rivers. DOC levels are roughly 3 mg/L in the SRP canals on the day of sampling, but rainfalls affected when/where the water was released from.
- 5. Some very high turbidity was observed during the late December rains. Snowpack levels are above average in the watershed too.
- 6. Our research focuses for 2009 are described.
- 7. Size exclusion chromatograms of organic carbon are presented with the aim of comparing watershed TOC sources to aid in improving TOC for reductions in DBP formation.
- 8. Breakfast with Quagga Mussels see last page of this months newsletter

7

Table 1 Summary of WTP Operations

Table I Sullill	iai y Oi	LVVII	Pperano	115					
	Verde WTP	Union Hills	24 th Street WTP	N.Tempe J.G. Martinez	Deer Valley	Glendale Cholla WTP ³	Peoria Greenway WTP	Val Vista	South Tempe
	Verde River	CAP Canal		Arizona Canal					h Canal
PAC Type and Dose		None	10 ppm Calgon WPH		7.5 ppm Norit				None
Copper Sulfate		None	None		None				None
PreOxidation		0.5 ppm	None		None				None
Alum Dose Alkalinity pH		8.0 ¹ 124 7.6	50 153/136 7.05		48 162/130 8.4/7.2				20 156 7.7
Finished water DOC DOC removal ²									
Average turbidity over last 7 days		0.4 ntu	9 to 24 ntu		10 to 173 ntu (peak up to 370 nt)				4.9 ntu
Recommendations								Down until April 15 th	

¹ Ferric chloride instead of alum; plus 2.25 ppm sulfuric acid

Table 1 SRP/CAP OPERATIONS - Values in cfs, for January 5, 2009

System	SRP Diversions	CAP
Arizona Canal	203	0
South Canal	114	0
Pumping	60	0
Total	377	0

• SRP is releasing water from both Verde and Salt River Systems. Salt River release from Saguaro Lake: 179 cfs; it is unusual to be releasing Salt River water this time of year. Verde River release from Bartlett Lake: 100 cfs.

² Calculated based upon influent and filtered water DOC (note that DOC – not TOC – is used in this calculation)

³ Sample from finished water includes a blend of surface and ground water sources

The Snowpack in Arizona is above average this year (see table below from:

 $\label{lem:http://www.wcc.nrcs.usda.gov/reports/UpdateReport.html?textReport=Arizona\&textRptKey=2\&textFormat=SNOTEL+Snowpack+Update+Report&StateList=2\&RegionList=Select+a+Region+or+Basin&SpecialList=Select+a+Special+Report&MonthList=January+++++++&DayList=6&YearList=2009&FormatList=N&OutputFormatList=HTML&textMonth=January+++++++&textDay=6&CompYearList=select+a+year)$

Arizona SN	OTFL Sr	nownac	k Unda	te Ro	eport		
Based on Mountain Data from NRCS SNOTEL Sites							
	ovisional dat				103		
Data based on the first readi		•			ıv lanua	ry 06 2009)
Data based on the first readil	ig or the day		Water E			Percen	
Basin Site Name	Elev (ft)	Current (in)	Today's Average (in)		Peak	Today's Average	
/ERDE RIVER BASIN							
BAKER BUTTE	7300	7.3	2.7	5.9	Feb 24	270	124
FORT VALLEY	7350	4.9	N/A	N/A	N/A	*	,
FRY	7200	8.6	3.2	7.2	Feb 19	269	119
HAPPY JACK	7630	7.0	2.4	6.4	Mar 09	292	109
MORMON MOUNTAIN	7500	8.4	2.9	6.9	Mar 06	290	122
MORMON MTN SUMMIT	8500	10.8	N/A	N/A	N/A	*	,
WHITE HORSE LAKE	7180	7.1	2.5	5.4	Feb 23	284	131
Basin-wide percent of	average					280	121
SAN FRANCISCO PEAK	S						
SNOWSLIDE CANYON	9730	15.8	7.4	14.4	Apr 04	214	110
Basin-wide percent of	average					214	110
CENTRAL MOGOLLON RIM							
BAKER BUTTE	7300	7.3	2.7	5.9	Feb 24	270	124
HEBER	7640	9.3	2.9	5.5	Feb 13	321	169
PROMONTORY	7930	14.0	5.4	13.1	Mar 08	259	107
Basin-wide percent of	average					278	125

BALDY	9125	8.4	3.9	8.3	Mar 08	215	101
MAVERICK FORK	9200	11.5	4.7	10.3	Mar 05	245	112
Basin-wide percent of a	verage					231	107
UPPER SALT RIVER BAS	HITE N	IOUNTA	INS				
BALDY	9125	8.4	3.9	8.3	Mar 08	215	101
BEAVER HEAD	7990	3.6	2.1	3.3	Feb 11	171	109
CORONADO TRAIL	8400	3.9	2.2	3.5	Feb 21	177	111
HANNAGAN MEADOWS	9020	6.8	6.1	12.5	Mar 10	111	54
MAVERICK FORK	9200	11.5	4.7	10.3	Mar 05	245	112
NUTRIOSO	8500	1.3	N/A	N/A	N/A	*	*
WILDCAT	7850	4.9	2.1	4.4	Mar 02	233	111
Basin-wide percent of a	verage					185	92
SAN FRANCISCO RIVER	BASIN						
BEAVER HEAD	7990	3.6	2.1	3.3	Feb 11	171	109
CORONADO TRAIL	8400	3.9	2.2	3.5	Feb 21	177	111
HANNAGAN MEADOWS	9020	6.8	6.1	12.5	Mar 10	111	54
FRISCO DIVIDE	8000	3.3	1.6	3.1	Feb 19	206	106
SILVER CREEK DIVIDE	9000	5.8	4.8	10.6	Mar 16	121	55
Basin-wide percent of a	verage					139	71
UPPER GILA RIVER BASIN							
LOOKOUT MOUNTAIN	8500	1.7	3.0	3.5	Jan 27	57	49
SIGNAL PEAK	8360	3.5	2.9	5.6	Feb 19	121	63
SILVER CREEK DIVIDE	9000	5.8	4.8	10.6	Mar 16	121	55
Basin-wide percent of average 103						56	
M Missing data . * And			مام می درماناما		_		

⁻M = Missing data.; * = Analysis may not provide a valid measure of conditions.

The Snow Water Equivalent PERCENT OF AVERAGE represents the current snow water equivalent found at selected SNOTEL sites in or near the basin compared to the average value for those sites on this day.

The Snow Water Equivalent PERCENT OF MAXIMUM AVERAGE represents the current snow water equivalent found at selected SNOTEL sites in or near the basin compared to the maximum average value for those sites.

Reference period for average conditions is 1971-2000.

N/A = No average available.

Table 2 - Water Treatment Plants – January 5, 2009

Sample Description	MIB (ng/L)	Geosmin (ng/L)	Cyclocitral (ng/L)
24 th Street WTP Inlet	<2.0	2.1	8.1
24 th Street WTP Treated	<2.0	<2.0	5.7
Deer Valley Inlet	<2.0	<2.0	5.7
Deer Valley WTP Treated	<2.0	<2.0	7.5
Val Vista Inlet	<2.0	<2.0	<2.0
Val Vista WTP Treated –East			
Val Vista WTP Treated -West			
Union Hills Inlet	2.3	<2.0	3.1
Union Hills Treated	<2.0	<2.0	<2.0
Tempe North Inlet			
Tempe North Plant Treated			
Tempe South WTP	2.5	2.0	2.6
Tempe South Plant Treated	2.5	2.0	2.3
Greenway WTP Inlet			
Greenway WTP Treated			
Glendale WTP Inlet	2.2	2.0	<2.0
Glendale WTP Treated	<2.0	<2.0	3.4
Glendale WTP Treated (Lab)			

Table 3 - Canal Sampling – January 5, 2009

System	Sample Description	MIB (ng/L)	Geosmin (ng/L)	Cyclocitral (ng/L)
CAP	Waddell Canal	<2.0	<2.0	<2.0
	Union Hills Inlet	2.3	<2.0	3.1
	CAP Canal at Cross-connect			
	Salt River @ Blue Pt Bridge			
	Verde River @ Beeline	2	<2.0	2.2
AZ	AZ Canal above CAP Cross-connect	2.5	<2.0	2.4
Canal	AZ Canal below CAP Cross-connect	2.0	<2.0	2.7
	AZ Canal at Highway 87	2.1	<2.0	2.2
	AZ Canal at Pima Rd.	<2.0	2.2	4.7
	AZ Canal at 56th St.	<2.0	<2.0	9.3
	AZ Canal - Inlet to 24 th Street WTP	<2.0	2.1	8.1
	AZ Canal - Central Avenue	2.2	<2.0	4
	AZ Canal - Inlet to Deer Valley WTP	<2.0	<2.0	5.7
	AZ Canal - Inlet to Glendale WTP	2.2	2.0	<2.0
South	South Canal below CAP Cross-connect			
and	South Canal at Val Vista WTP	<2.0	<2.0	<2.0
Tempe	Head of the Tempe Canal	2.2	2.0	3.6
Canals	Tempe Canal - Inlet to Tempe's South Plant	2.5	2.0	2.6

Table 4 - Reservoir Samples – January 6, 2009

Sample Description	Location	MIB (ng/L)	Geosmin (ng/L)	Cyclocitral (ng/L)
			(lig/L)	(lig/L)
Lake Pleasant (Dec08)	Eplimnion	4.4	<2.0	<2.0
Lake Pleasant (Dec08)	Hypolimnio	4.5	<2.0	<2.0
Verde River @ Beeline		2.0	3.6	2.2
Bartlett Reservoir	Epilimnion	<2.0	<2.0	2.2
Bartlett Reservoir	Epi-near			
	dock	<2.0	<2.0	<2.0
Bartlett Reservoir	Hypolimnio	<2.0	<2.0	4.4
Salt River @ BluePt Bridge				
Saguaro Lake	Epilimnion	2.0	<2.0	<2.0
Saguaro Lake	Epi -			
	Duplicate	2.1	<2.0	2.5
Saguaro Lake	Epi-near doc			
		2.3	<2.0	2.2
Saguaro Lake	Hypolimnio	<2.0	<2.0	2.4
R20 (Oct/08)		8.6	<2.0	<2.0
R20 (Nov/08)		<2.0	<2.0	<2.0

Organic Matter Status In the Treatment Plants

Table - Water Treatment Plants - January 05, 2009

(mg/L)	UV254 (1/cm)	SUVA (L/mg-m)	TDN		DOC removal (%)
3.08	0.069	2.25	0.66		
2.27	0.034	1.48	0.60		26
3.33	0.078	2.33	0.64		
2.41	0.041	1.68	0.54		27
3.02	0.076	2.52	0.54		
2.69	0.041	1.53	0.58		
2.20	0.023	1.03	0.49		18
3.45	0.083	2.41	0.43		
2.94	0.061	2.07	0.50		15
3.24	0.079	2.42	0.64		
	3.08 2.27 3.33 2.41 3.02 2.69 2.20	3.08	3.08 0.069 2.25 2.27 0.034 1.48 3.33 0.078 2.33 2.41 0.041 1.68 3.02 0.076 2.52 2.69 0.041 1.53 2.20 0.023 1.03 3.45 0.083 2.41 2.94 0.061 2.07	3.08 0.069 2.25 0.66 2.27 0.034 1.48 0.60 3.33 0.078 2.33 0.64 2.41 0.041 1.68 0.54 3.02 0.076 2.52 0.54 2.69 0.041 1.53 0.58 2.20 0.023 1.03 0.49 3.45 0.083 2.41 0.43 2.94 0.061 2.07 0.50	3.08 0.069 2.25 0.66 2.27 0.034 1.48 0.60 3.33 0.078 2.33 0.64 2.41 0.041 1.68 0.54 3.02 0.076 2.52 0.54 2.69 0.041 1.53 0.58 2.20 0.023 1.03 0.49 3.45 0.083 2.41 0.43 2.94 0.061 2.07 0.50

DOC = Dissolved organic carbon

UV254 = ultraviolet absorbance at 254 nm (an indicator of aromatic carbon content)

SUVA = UV254/DOC

TDN = **Total dissolved nitrogen** (mgN/L)

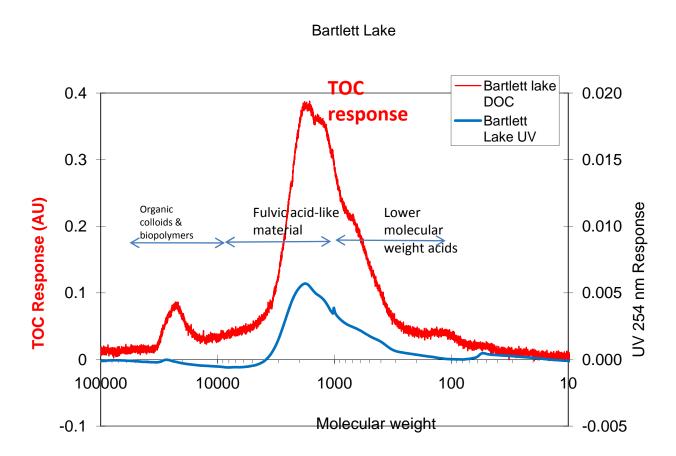
Organic Matter Status In the Canals

Sample Description	DOC (ma/L)	UV254	SUVA	TDN
	(mg/L)	(1/cm)	(L/mg-m)	
Waddell Canal	2.66	0.039	1.46	0.58
Union Hills Inlet	2.69	0.041	1.53	0.58
CAP Canal at Cross-connect				
Salt River @ Blue Pt Bridge				
Verde River @ Beeline	2.30	0.068	2.95	0.62
AZ Canal above CAP Cross-connect	3.28	0.084	2.56	0.54
AZ Canal below CAP Cross-connect	3.30	0.085	2.57	0.55
AZ Canal at Highway 87	3.01	0.070	2.31	0.49
AZ Canal at Pima Rd.	3.08	0.071	2.31	0.64
AZ Canal at 56th St.	2.99	0.068	2.29	0.63
AZ Canal - Inlet to 24 th Street WTP	3.08	0.069	2.25	0.66
AZ Canal - Central Avenue	3.39	0.077	2.26	0.80
AZ Canal - Inlet to Deer Valley WTP	3.33	0.078	2.33	0.64
AZ Canal - Inlet to Glendale WTP	3.24	0.079	2.42	0.64
AZ Canal - Inlet to Greenway WTP				
South Canal below CAP Cross-connect				
South Canal at Val Vista WTP	3.02	0.076	2.52	0.54
Head of the Tempe Canal	3.35	0.081	2.40	0.46
Tempe Canal - Inlet to Tempe's South Plant	3.45	0.083	2.41	0.43
Chandler WTP – Inlet				

Organic Matter Status In the Watershed

Sample Description	Location	DOC (mg/L)	UV254 (1/cm)	SUVA (L/mg-m)	TDN
Lake Pleasant (Dec 2008)	Eplimnion	3.13	0.048	1.53	0.43
Lake Pleasant (Dec 2008)	Hypolimnio	3.15	0.048	1.52	0.41
Verde River @ Beeline		2.30	0.068	2.95	0.62
Bartlett Reservoir	Epilimnion	3.05	0.083	2.72	0.44
Bartlett Reservoir	Epi-near				
	dock				
Bartlett Reservoir	Hypolimnio	3.35	0.083	2.49	0.52
Salt River @ BluePt Bridge					
Saguaro Lake	Epilimnion	4.94	0.114	2.30	0.71
Saguaro Lake	Epi -				
	Duplicate	4.80	0.112	2.34	0.65
Saguaro Lake	Epi-near doc				
Saguaro Lake	Hypolimnio	4.75	0.112	2.35	0.58
Verde River at Tangle	Nov-09	1.00	0.020	2.00	0.09
Havasu	Nov-09	2.87	0.040	1.40	0.64

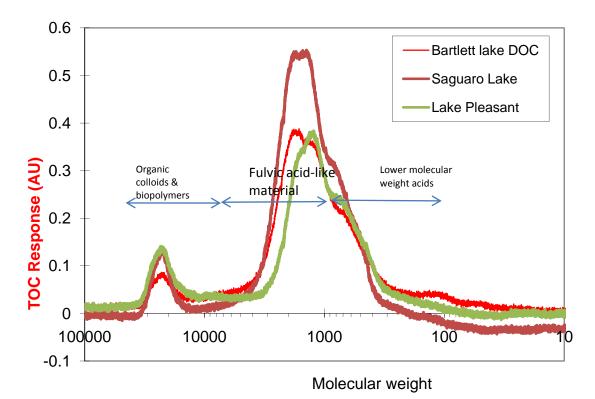
Nitrogen levels and organic carbon levels remain higher in the Salt River system compared with the Verde River system. Over the next month we will be sampling all of the Salt River reservoirs for organic matter analysis.


Research Focus for 2009

- 1. Continue baseline regional monitoring of watershed, canals and treatment facilities for T&O compounds, organics, nutrients and conductance (and other water quality).
- 2. Continue analysis of pharmaceuticals in source waters and potential to remove them during activated carbon treatment.
- 3. Disinfection byproduct research
 - a. Investigate easy & rapid measurement assays for THMs
 - b. Assess impact of Las Vegas wastewater discharge options on DBP precursors in the CAP system
 - c. Assess colorimetric assays to identify DBP-reactive portions of organic matter and assess their removal during water treatment and within the watershed
 - d. Collaborate with an Arizona Water Institute project on riverbank filtration for central Arizona water supplies.
 - e. Removal of DBP precursors by GAC treatment
- 4. Other ideas that are important to your utility should be brought to our attention

Characterization of Organic Matter in our Watershed

We now have the capability to do size-exclusion chromatography with on-line TOC detection of water samples. This is allowing us to "fingerprint" different molecular sizes of TOC in the watershed and removal during water treatment. This is an important step in understanding how TOC from different watersheds can be treated and affect DBP formation. Examples are given below.


The SEC-TOC and SEC-UV chromatogram below is for Bartlett Lake. In red is the organic carbon response and in blue is the UV absorbance at 254 nm response. From left to right on the x-axis is the molecular weights of the organic matter. High molecular weight organic colloids and biopolymers exhibit a TOC response, but no UV254 response. Fulvic –acid like materials are moderately high molecular weight and exhibit both UV and TOC response (i.e., higher SUVA). Lower molecular weight organics have less UV response (i.e., lower SUVA).

We can also integrate the area under the curve to represent the amount of TOC response for different molecular weight ranges. The table below compares Bartlett Lake against the other major surface water sources; the plots for this data are shown below too. Together the results show that Lake Pleasant (CAP water) has a higher organic colloid content and more lower molecular weight organics than the SRP supplies. Saguaro Lake on the Salt River has the highest TOC response and higher molecular weight materials.

	Percentage TOC response in each region				
	Bartlett Lake				
Molecular weight Range	Lake	Pleasant	Saguaro Lake		
10,000 to 50,000	9%	14%	7%		
1,000 to 10,000	58%	49%	66%		
300 to 1,000	27%	32%	27%		
100 to 300	7%	4%	0%		

December 2008

WHAT: AzSCE Water Resources Technical Committee

Monthly Breakfast Meeting / Presentation

WHEN: Thursday, January 15, 2009 @ 7:15 AM

* Presentation Begins at 7:30 AM *

WHERE: Salt River Project cafeteria

1521 North Project Drive (One block East of Van Buren / Priest)

WHO: Al Graves, P.E., Senior Civil Maintenance Engineer, Central Arizona Project

Al graduated from Arizona State University with a BS in Civil Engineering in 1974. He spent the next 31 years working for various U.S. Government agencies, spending most of his career with the U.S. Bureau of Reclamation. His Reclamation activities included designing the water operation and control schemes for the Central Arizona Project (CAP), providing technical assistance to the Egyptian Ministry of Public Works and Water Resources, and managing Reclamation's Dam Safety inspection program. He spent the last ten years of his Reclamation career heading up Reclamation's rope access team, inspecting most of the major dams in Reclamation's inventory.

Al retired from the U.S. Government in September 2005 and returned to the CAP as a Maintenance Engineer. He has provided CAP with the benefit of his varied water resource experiences and was tasked with managing CAP's Quagga Mussel Program when the mussels were discovered in Lake Mead in January 2007.

TOPIC: How CAP is Facing the Quagga Mussel Invasion

Al will provide a brief overview of CAP's Quagga Mussel Program and some background on the Quagga Mussel infestation, and then discuss the potential impact of the mussels on CAP's ability to deliver water and its monitoring efforts. Information on current research efforts by Reclamation and others as well as potential biological solutions will also be presented.