REGIONAL WATER QUALITY NEWSLETTER

DATE: Report for March 13-14, 2006 Samples Collected on March 20, 2006

From the Phoenix, Tempe, Peoria, CAP, SRP – ASU Regional Water Quality Partnership

PLEASE NOTE THE WEBADDRESS HAS CHANGED FOR OUR PROJECT:

http://enpub.fulton.asu.edu/pwest/tasteandodor.htm

DISTRIBUTION: Phoenix: Greg Ramon, Robert Leible, Walid Alsmadi, Edna Bienz, Frank Blanco, Nicoleta Buliga, Natasha Bernard, Alice.Brawley-Chesworth, Paul Burchfield, Jennifer Calles, Aimee Conroy, Tom Doyle, Ron Jennings, Francisco Gonzales, Randy Gottler, Keith Greenburg, Mike Gritzuk, Yu Chu Hsu, Maureen Hymel, Ron Jennings, Tom Martin, Shan Miller, Erin Pysell, Paul Mally, Matt Palencia, Chris Rounseville, Raymond Schultz, Bonnie Smith, Jeff Van Hoy, Mike Welch Vic Vanderslice; SRP: Gregg Elliott, Brian Moorehead, Rick Prigg: CAWCD: Doug Crosby, Patrick Dent, Brian Henning, Tim Kacerek; Steve Rottas; Tempe: Tom Hartman; Michael Bershad, Grant Osburn, German McCutheon.; Scottsdale: Michelle DeHaan,, B. Vernon; Suzanne Grendahl; Gilbert: Antonio Trejo, Bill Taylor; Glendale: Tracey Hockett, Usha Iyer, Stephen Rot, Kim Remmel, Tracy Hockett; Mesa: Alan Martindale; Charolette Jones; William Hughes; Matt Rexing Peoria: John Kerns, Dave Van Fleet, Linda Wahlstrom; Chandler: Lori Mccallum, Robert Goff, Victoria Sharp, Jackie Strong, Chris Kincaid, Wendy Chambers; Tucson: Michael Dew. American Water: Jeff Stuck, Nina Miller Chaparral City Water Company (CCWC): Bob Carlson Consultants: G. Masseeh, S. Kommineni (Malcom Pirnie); Warren Swanson (Schmueser Gordon Meyer, Inc., Colorado); Troy Day (CZN); Vance Lee, Bob Ardizzone (Carollo Engineering); Paul Westcott, Applied Biochemists, Shugen Pan, Greeley and Hanson, Larry Baker; ASU Team: Mario Esparza, Marisa Masles, Darla Gill, Hu Qiang, Milt Sommerfeld, Tom Dempster, Paul Westerhoff, **EPA**: Marvin Young; **DEQ**, Casey Roberts

If you wish to receive the *Newsletter* and are not on our list, send your email address to Dr. Paul Westerhoff (p.westerhoff@asu.edu) get a free "subscription".

SUMMARY: EVALUATION AND RECOMMENDATIONS

- 1. MIB concentrations are low throughout the water supply system.
- 2. GEOSMIN is being formed already in the Arizona Canal between Pima Road and Deer Valley WTP. This could be due to the lower than normal flows in the canal, because of recent rain and Tempe-North WTP and 24th Street WTP being off-line this reduces flowrates in the canal and allows the water to become more stagnant.
- 3. All MIB and Geosmin concentrations are < 5 ng/L in finished waters. Geosmin removal is apparently occurring at Deer Valley WTP, even without PAC addition.
- 4. DOC concentrations are highest in Bartlett Reservoir, although last week mostly Salt River water was being used. When Verde River water is used later this year, there may be an issue with DBP compliance.

Table 1 Summary of WTP Operations

	Union Hills	24 th Street WTP	North Tempe	Deer Valley	Peoria WTP	Val Vista	South Tempe	Chandler WTP
Location	CAP	Ari	Arizona Canal System		South Canal system			
PAC Type and	No report	Plant is	Off-	No	No	0.71 ppm	No report	
Dose		off-line	line		report			
Copper Sulfate			until April	No		No		
PreOxidation			Арт	No		1.8 ppm		
						24/7		
Alum Dose				35ppm		55ppm		
Alkalinity				120		118		
pН				7.2		7.21		
WTP	No T&O			No T&O		No T&O	No T&O	
Comments	complaints			complaints		complaints	complaints	
Process								
Recomendations								

^{*} Ferric chloride instead of alum

MONITORING RESULTS

Table 2 - Water Treatment Plants – March 13, 2006

Sample Description	MIB (ng/L)	Geosmin (ng/L)	Cyclocitral (ng/L)
24 th Street WTP Inlet			
24 th Street WTP Treated			
Deer Valley Inlet	<2.0	12.3	<2.0
Deer Valley WTP Treated	<2.0	4.7	<2.0
Val Vista Inlet	<2.0	<2.0	<2.0
Val Vista WTP Treated –East	<2.0	<2.0	2.5
Val Vista WTP Treated -West	<2.0	<2.0	<2.0
Union Hills Inlet	<2.0	<2.0	<2.0
Union Hills Treated	<2.0	<2.0	<2.0
Tempe North Inlet			
Tempe North Plant Treated	7		
Tempe South WTP	<2.0	<2.0	<2.0
Tempe South Plant Treated	<2.0	4.3	<2.0
Chandler WTP Inlet	<2.0	<2.0	14.7
Chandler WTP Treated	<2.0	<2.0	<2.0
Greenway WTP Inlet	<2.0	<2.0	<2.0
Greenway WTP Treated	<2.0	<2.0	<2.0

Table 3 - Canal Sampling – March 13, 2006

System	Sample Description	MIB (ng/L)	Geosmin	Cyclocitral
			(ng/L)	(ng/L)
CAP	Waddell Canal	<2.0	<2.0	<2.0
	Union Hills Inlet	<2.0	<2.0	<2.0
	CAP Canal at Cross-connect	<2.0	<2.0	<2.0
	Salt River @ Blue Pt Bridge	<2.0	<2.0	<2.0
	Verde River @ Beeline	<2.0	<2.0	3.1
ΑZ	AZ Canal above CAP Cross-connect	<2.0	<2.0	<2.0
Canal	AZ Canal below CAP Cross-connect	<2.0	<2.0	<2.0
	AZ Canal at Highway 87	<2.0	<2.0	<2.0
	AZ Canal at Pima Rd.	<2.0	<2.0	<2.0
	AZ Canal at 56th St.	<2.0	5.1	<2.0
	AZ Canal - Inlet to 24 th Street WTP	1		
	AZ Canal - Central Avenue	<2.0	10.4	<2.0
	AZ Canal - Inlet to Deer Valley WTP	<2.0	12.3	<2.0
	AZ Canal - Inlet to Greenway WTP	<2.0	<2.0	<2.0
South	South Canal below CAP Cross-connect	<2.0	<2.0	<2.0
and	South Canal at Val Vista WTP	<2.0	<2.0	<2.0
Tempe	Head of the Tempe Canal	<2.0	<2.0	<2.0
Canals	Tempe Canal - Inlet to Tempe's South]		
	Plant	<2.0	<2.0	<2.0
	Chandler WTP – Inlet	<2.0	<2.0	14.7

Table 4 - Reservoir Samples – March 14, 2006

Sample Description	Location	MIB (ng/L)	Geosmin (ng/L)	Cyclocitral (ng/L)
Lake Pleasant	Eplimnion	<2.0	<2.0	<2.0
Lake Pleasant	Hypolimnion			
		<2.0	<2.0	<2.0
Verde River @ Beeline		<2.0	<2.0	3.1
Bartlett Reservoir	Epilimnion	<2.0	3.9	4.0
Bartlett Reservoir	Epi-near dock	<2.0	4.9	4.8
Bartlett Reservoir	Hypolimnion	<2.0	3.0	<2.0
Salt River @ BluePt Bridge		<2.0	<2.0	<2.0
Saguaro Lake	Epilimnion	<2.0	<2.0	<2.0
Saguaro Lake	Epi - Duplicate	<2.0	<2.0	<2.0
Saguaro Lake	Epi-near doc	<2.0	<2.0	<2.0
Saguaro Lake	Hypolimnion	<2.0	<2.0	<2.0
Verde River at Tangle (February)		<2.0	<2.0	<2.0
Havasu		<2.0	<2.0	<2.0

Table 5 - SRP/CAP OPERATIONS

Values in cfs, for March 13, 2006

System	SRP Diversions	CAP
Arizona Canal	212	52
South Canal	399	0
Pumping	41	0
Total	652	52

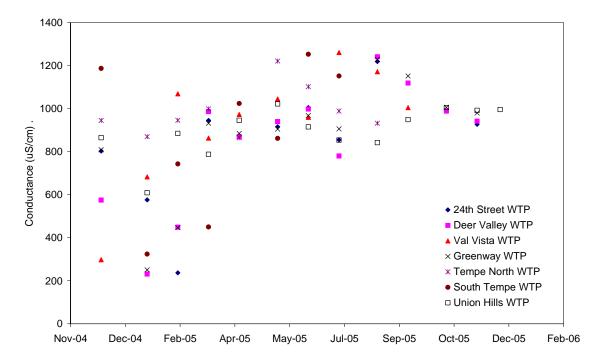
SRP is releasing water from both Verde and Salt River Systems. Salt River release from Saguaro Lake: 408 cfs; Verde River release from Bartlett Lake: 100 cfs. Horseshoe Lake is at 0% capacity.

Operations and Maintenance Update

3/15/2006

WADDELL RELEASE SCHEDULE						
		% Flow	Date	Time		
Current Waddell Releases	0 cfs	0%	03/15/06	18:00		
Current Pass-Thru Flow	280 cfs	100%	03/15/06	18:00		
New Waddell Releases	1000 cfs	100%	03/16/06	8:00		
New Pass-Thru Flow	0 cfs	0%	03/16/06	8:00		
New Waddell Releases New Pass-Thru Flow						
New Waddell Releases New Pass-Thru Flow						

SPECIAL NOTES / AQUEDUCT ACTIVITIES


All pass-thru pumping will cease at 00:01 on 3/16/2006 due to high turbid water reaching Lake Havasu .

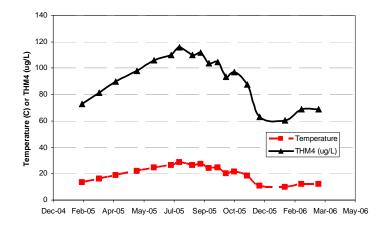
All deliveries will be made from Lake Pleasant starting at 08:00 on 3/16/2006 until further notice.

CHANGES IN CONDUCTANCE OVER THE PAST YEAR

The graph below illustrates how floods in early 2004 resulted in very low conductance (i.e., low TDS) water. In general TDS $\sim 60\%$ of conductance. Conductance levels have come back up in 2005. Some WTPs are impacted by groundwater or different surface waters that result in different conductance values.

Conductance of Inlet waters at WTP's in the Phoenix area

DISSOLVED ORGANIC CARBON & DISINFECTION BYPRODUCTS


The table below summarizes the DOC levels in the different source waters. The Verde River has the highest DOC and likely the highest DBP precursor levels.

Sample Description	Location	DOC (mg/L)	UV254 (1/cm)	SUVA (L/mg-cm)	Total Dissolved Nitrogen (mgN/L)
Lake Pleasant	Eplimnion	3.43	0.0591	1.7	0.455
Lake Pleasant	Hypolimnio	3.34	0.0572	1.7	0.262
Verde River @ Beeline		5.01	0.0337	2.4	0.579
Bartlett Reservoir	Epilimnion	5.42	0.0749	1.4	0.624
Bartlett Reservoir	Hypolimnio	5.43	0.0689	1.3	0.313
Salt River @ BluePt Bridge		3.54	0.111	3.1	0.733
Saguaro Lake	Epilimnion	3.66	0.1223	3.1	0.196
Saguaro Lake	Epi - Duplicate	3.69	0.1128	3.1	0.624
Saguaro Lake	Epi-near doc				
Saguaro Lake	Hypolimnio	3.68	0.1128	3.1	0.497
Verde River at Tangle Havasu		3.30	0.0358	1.1	1.192

The graph below shows the water temperature over the past year at the water treatment plants. Warmer water will form more DBPs. Consider one empirical equation for THM formation:

$$THM\,4 = 0.0412 \times \big[DOC\big]^{1.098} \times \big[Cl_2\big]^{0.152} \times \big[Bromide\big]^{0.068} \times \big[Temperature\big]^{0.069} \times \big[pH\big]^{1.601} \times \big[Contact_time\big]^{0.263}$$

Then if the only parameter that changes throughout the year is temperature, and assuming the other parameters stay constant (e.g., 3.5 mg/L DOC, 4 mg/L chlorine dose, 100 ug/L bromide, pH 7.2, and 24hours of contact time), then the predicted THM4 concentration is shown in the plot below. What the data shows is the significance of temperature alone on DBP formation. These types of DBP predictions tools will be further discussed in future Newsletters.

