

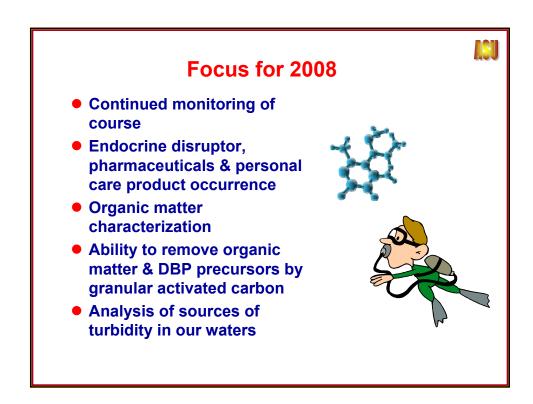
Regional Water Quality Issues: Algae and Associated Drinking Water Challenges

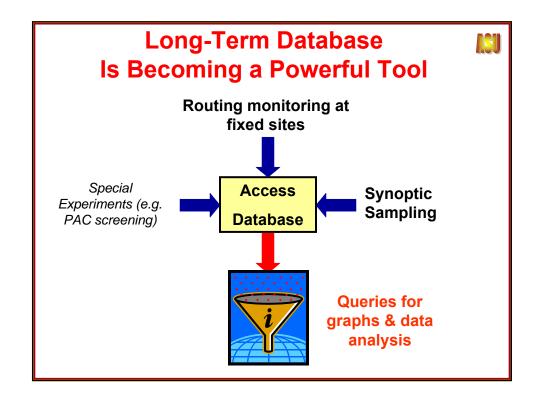
Workshop - October 2008

A Cooperative Research and Implementation Program
Arizona State University (Tempe, AZ)
Paul Westerhoff, Chao-An Chiu, Jun Wang, Pierre Herckes, Rolf
Halden, and Marisa Masles

Salt River Project
Central Arizona Project
City of Phoenix
City of Tempe
City of Peoria
City of Glendale
ASU NSF Water Quality Center

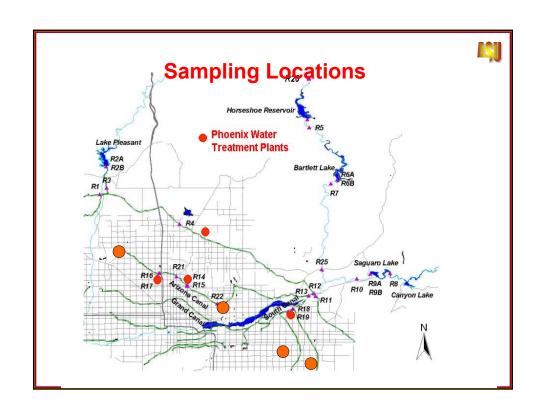
Agenda

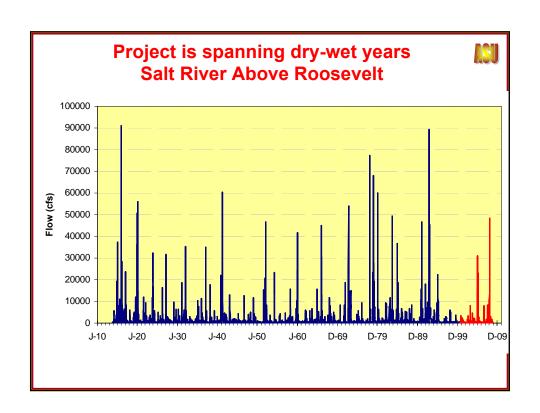

Purpose: Provide a forum to review and discuss on-going regional water quality issues, in particular algae-associated issues.

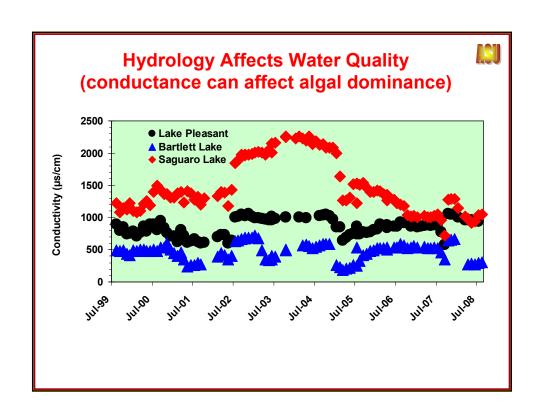

8:30	Refreshments
8:45	Introductions
9:00	Project scope & goals
• 9:15	Overview of water quality trends for Taste and Odor Compounds & other key water quality that affects drinking water
9:35	Understanding "where our turbidity comes from"
Break	
10:00	Pharmaceutical occurrence in source waters
10:20	Characterization of NOM & DBP formation
• 10:40	Removal of NOM from different source waters by Granular Activated Carbon
• 11:00	Future directions & discussion

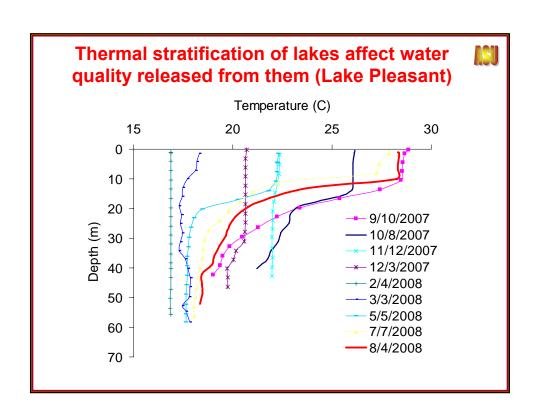
Project Goals

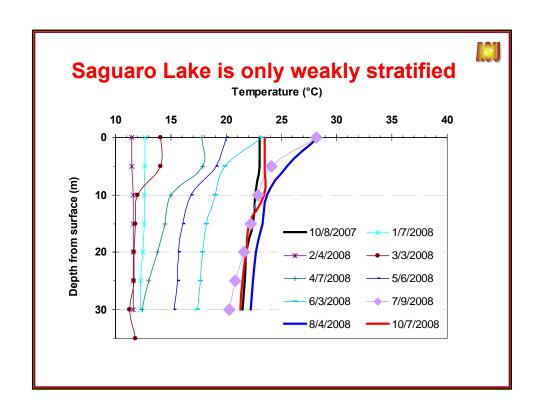
- Collect consistent database for non-regulated water constituents in central Arizona drinking water systems that cross jurisdictional boundaries
- Conduct research that improves our understanding of algal activity and hydrologic conditions on taste and odor production and organic matter
- Communicate watershed-wide water quality data and disseminate information on water quality/treatment to aid the local water systems
- Leverage funding from multiple local cities and agencies for water quality and treatment research projects

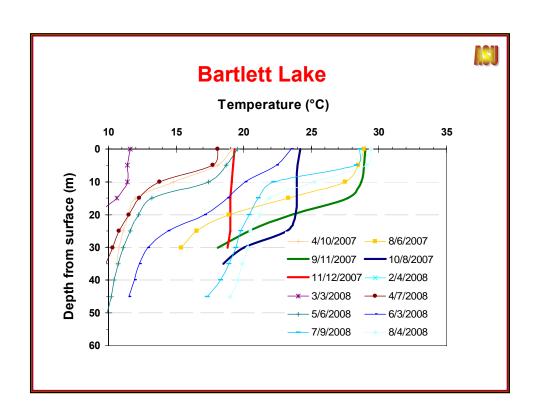

Benefits

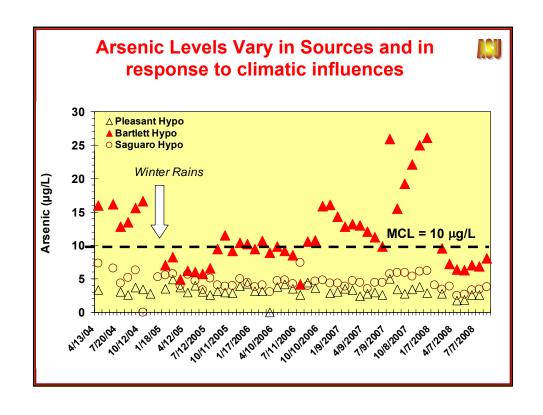

- Leveraged the funding with at least 8:1 external funding.
 Recent projects include:
 - ♦ AwwaRF / MPI/ ASU (\$165K) implant algae control
 - ♦ AwwaRF/ MWD/ASU /Yale (\$450K) N-DBPs
 - AwwaRF / ASU Organic chloramines (\$150K)
 - ♦ WERF / ASU organic colloids (\$100K)
 - SRP / ASU DBP Project + Molecular Probes + EDC occurrence (\$150K)
- Provides visibility to outside world that water municipalities in central Arizona are progressive and working collectively to understand and improve water quality
- Development of analytical and experimental skills to assist cities/consultants on regional issues
- ASU maintains ability to serve as independent third party for PAC testing
- We provide donuts and bagels at meetings

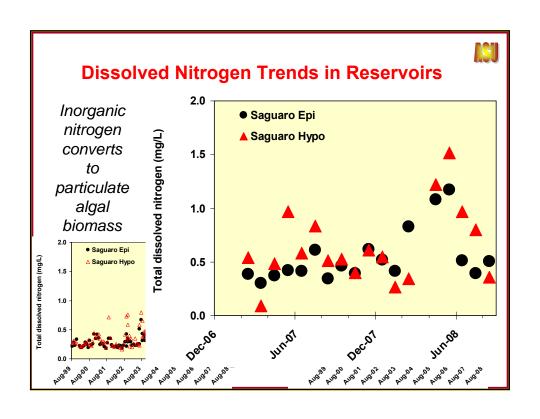


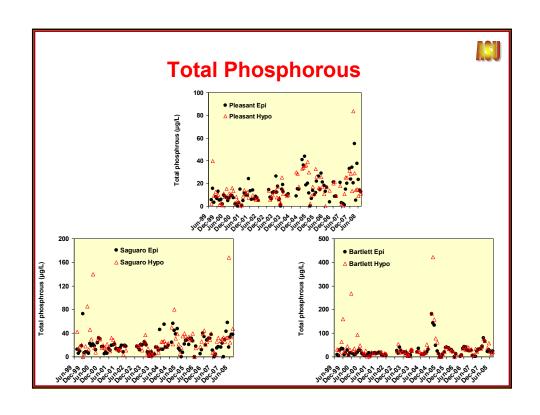

Overview of Water Quality in 2008

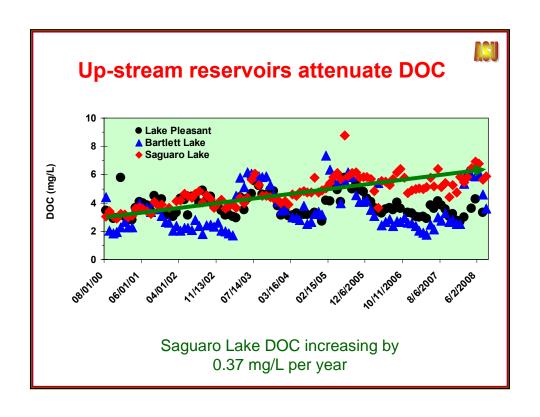

relative to other years

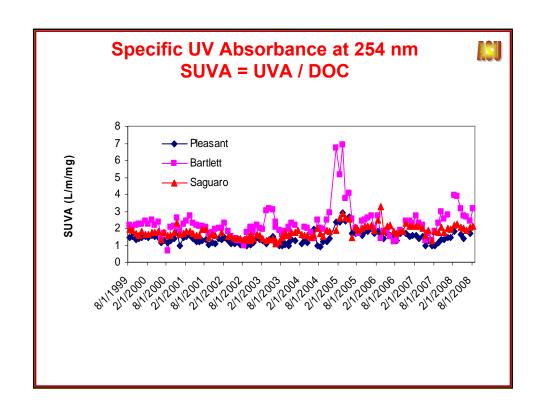


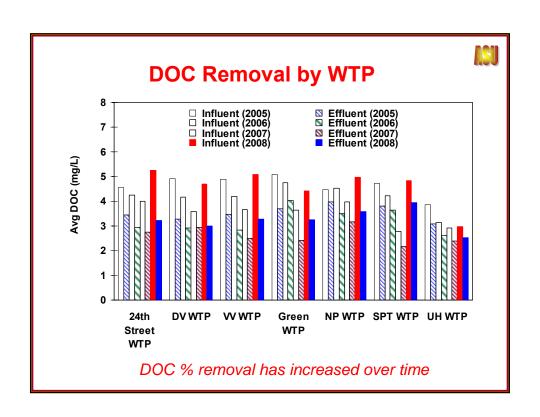


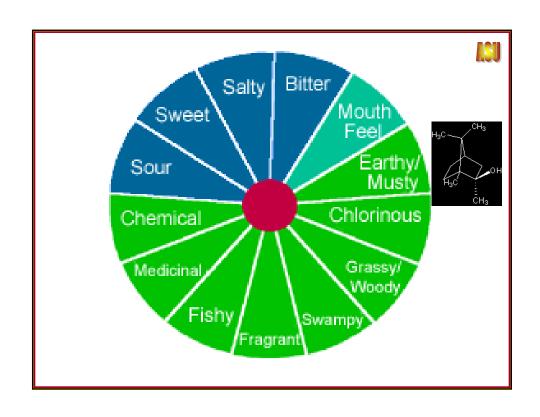


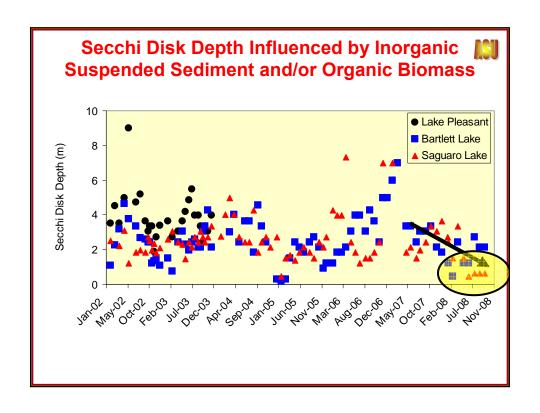


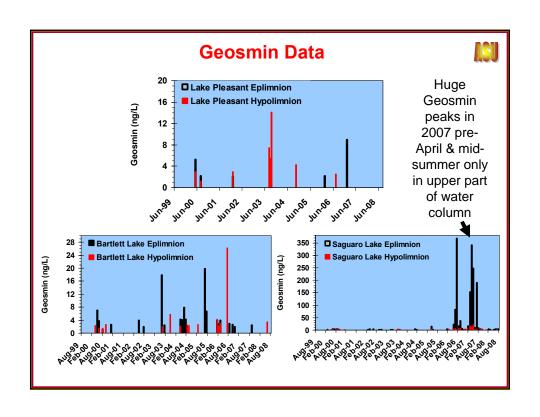


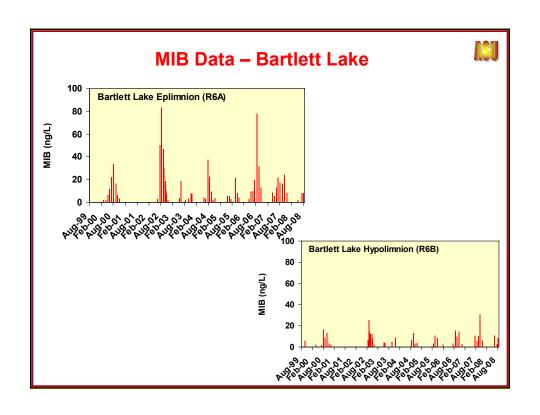


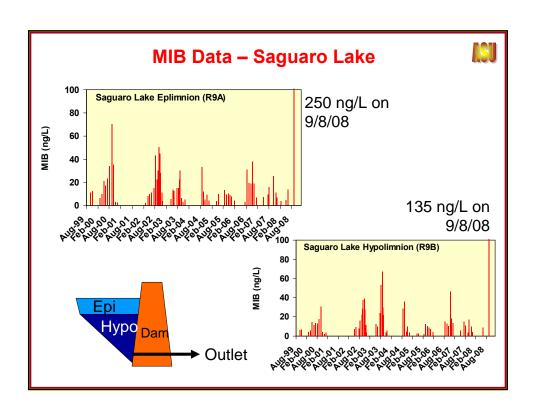


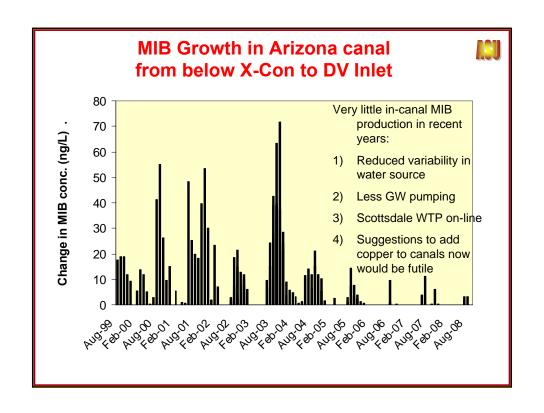


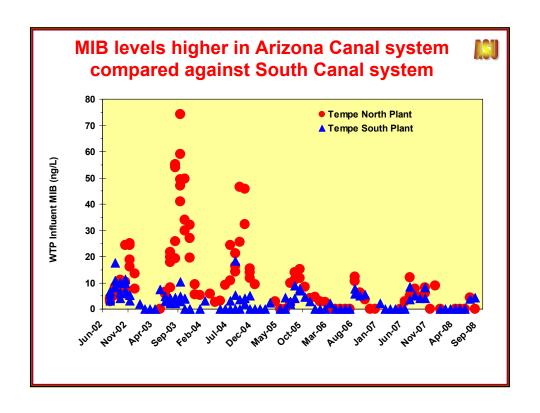










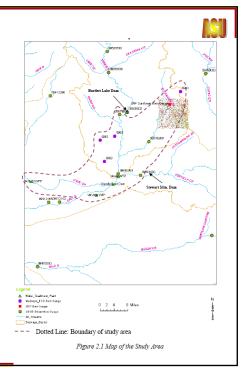


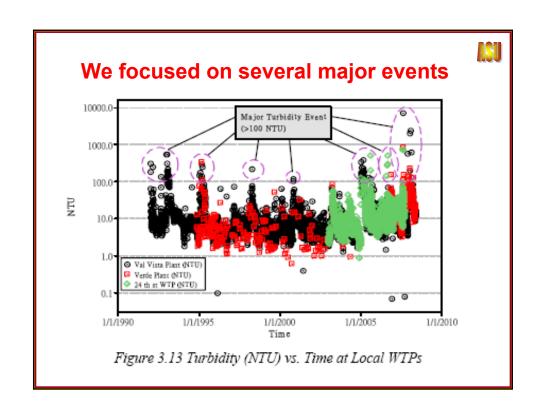
Summary of General Water Quality & Operations

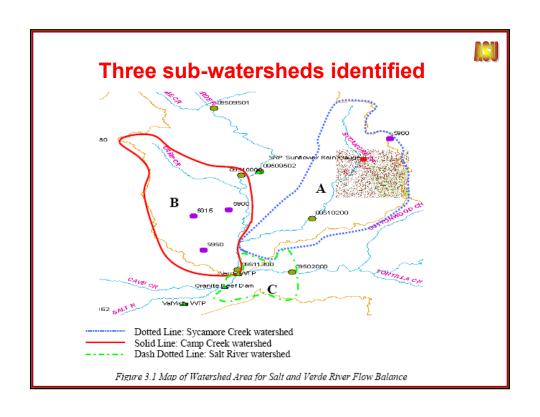
- "Normal" winter rains and above average moonsoons appear to have increased nutrient levels in some reservoirs
- Very high MIB production in Saguaro Lake; offset by SRP switching to Verde River in September
- Reservoirs are quite productive (low secchi disc = high algae) but conditions may not be favoring establishment of MIB producing algae
- DOC levels in Saguaro Lake have increased constantly over past 8 years (0.37 mg/L/year)
- EL NIÑO/SOUTHERN OSCILLATION (ENSO) neutral conditions are predicted through the Northern Hemisphere into Spring 2009 & "normal" weather conditions predicted by NOAA

When it Rains

Where does turbidity come from in our waters?

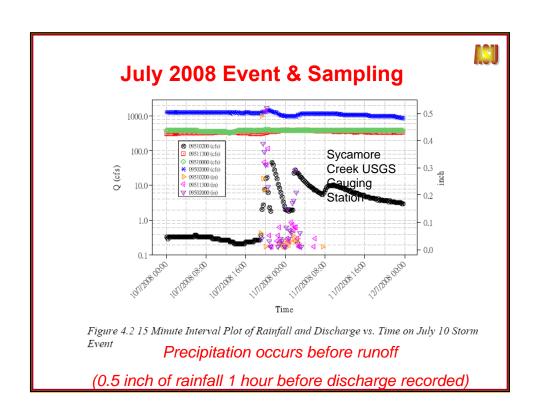

Turbidity


- Turbidity affects WTP operations (chemical dosing, solids loading & pathogen indictors)
- Turbidity response has been a focus for several cities in 2007-08
- Two turbidity events occur:
 - long-duration events resulting from upland runoff during winter or spring; Verde River reservoirs overflow
 - short-term events resulting from moonsoon events in the summer (focus of this study)

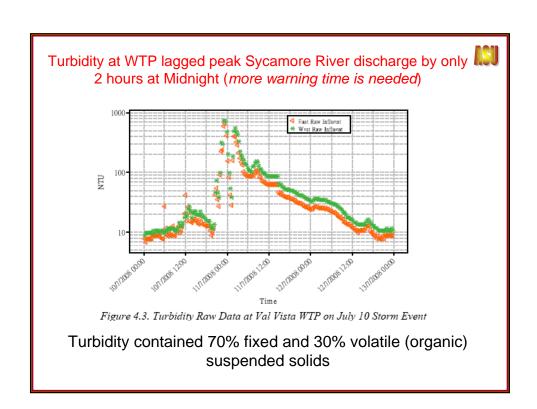


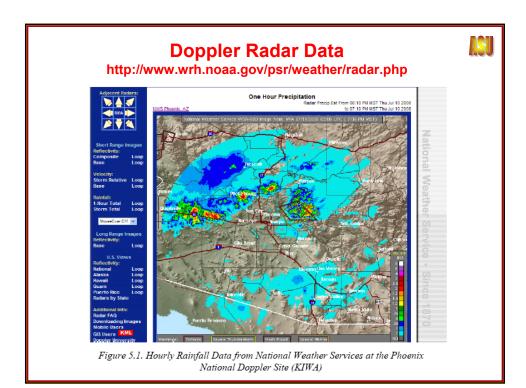
Critical Question

- Where does runoff carrying turbidity originate from that enters the SRP canals?
- What type of early warning program could be implemented?



Hydrologic Insights


- Added flow between on the Salt River below Stewart Mountain Dam and the confluence with the Verde River:
 - Contribution of runoff from this sub-watershed is small compared with Sycamore Creek or Camp Creek watersheds
 - Contribution towards turbidity was negligible
- Added flow between on the Verde River below Bartlett Dam and confluence with Salt River:
 - A water balance in the Lower Verde River using USGS gauging stations can be "closed"
 - Sycamore Creek produces roughly 2.5 times more runoff volume than Camp Creek watershed
 - Less than 5% of rainfall volume in sub-watersheds actually enters the Verde River (only during higher flow events)
 - These sub watersheds are dominate source of turbidity during rain events

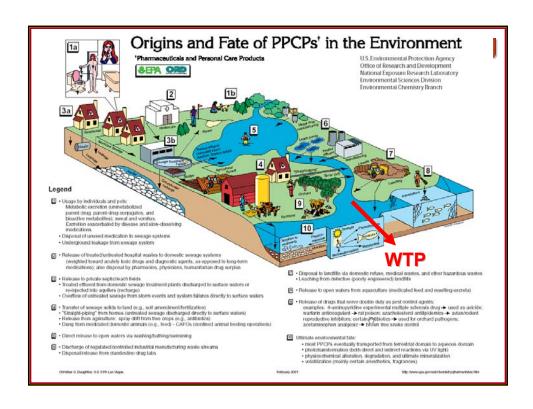


USGS Gauging Stations

- <u>09510000</u> VERDE RIVER BLW BARTLETT DAM, AZ.
- <u>09510200</u> SYCAMORE CREEK NEAR FORT MCDOWELL, AZ.
- <u>09511300</u> VERDE RIVER NEAR SCOTTSDALE, AZ.
- 09502000 SALT RIVER BLW STEWART MOUNTAIN DAM, AZ.

Multi-tier Turbidity Warning System

- Green light = normal conditions
- Yellow Light = Doppler radar indicates clouds building in lower Verde River watershed; start monitoring streamflows on Sycamore Creek and Verde River
- Orange light = precipitation is recorded at stations
- Red Light = Ratio of flows exceeds 1.1 for Verde River at Beeline Highway relative to Verde River below Bartlett Lake (09511300 and 09510200). Confirm with on-line turbidity meters. Indicates elevated turbidity will arrive at WTPs within a few hours.



ISI

Associated Press investigation:

Pharmaceuticals found in drinking water
A vast array of pharmaceuticals including
antibiotics, anti-convulsants, mood stabilizers
and sex hormones have been found in the
drinking water supplies of at least 41 million
Americans, an Associated Press investigation
shows.

March 2008

"No substance is a poison by itself. It is the dose that makes a substance a poison..."

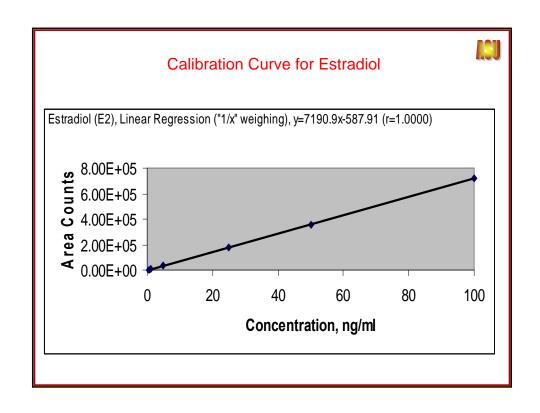
Paracelsus (1493-1541)

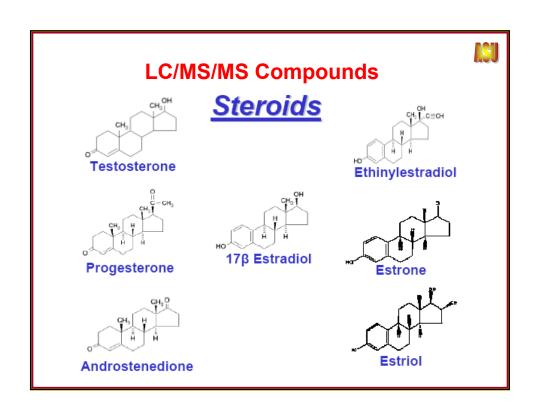
Pharmaceutical Risk Perspective

Compound	Max conc reported (ng/L) in surface water	Predicted No Effect Concentration (PNEC) (ng/L)	Liters of water/day → ADI ^b
Acetaminophen	10,000	5,000,000	2380
Albuterol	15ª	410,000	13,067
Ciprofloxacin	30	230,000	3,733
Codeine	1000	290,000	140
Digoxin	130ª	1,000	38
Fluoxetine	12	420,000	16,912
Gemfibrozil	790	800,000	4,873
Ibuprofen	1000	16,000,000	7,700
Metformin	150	9,100,000	28,933
Oxytetracycline	340	4,400,000	6,176
Sulfamethoxazole	1900	19,000,000	4,789
Warfarin	0.5a	23,000	22,400

* ND, % Reporting Limit

* Assumes average weight of 70 kg and max conc reported

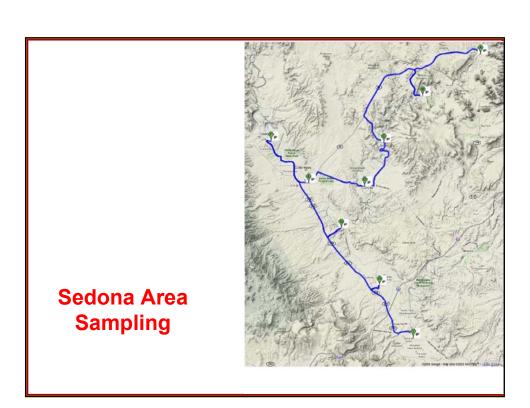

Reference: B.W. Schwab et al./ Regulatory Toxicology and Pharmacology 42 (2005) 296-312


Analytical Scheme

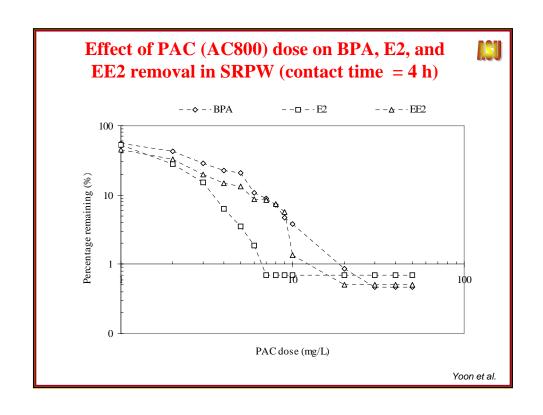
- Solid Phase extraction (Oasis HLB) @ ASU
- Analysis at Arizona Department of Health Services
- Method development support by a Arizona Water Institute grant

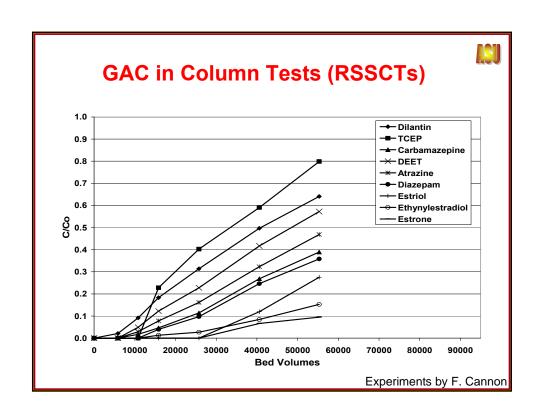
Arizona Potential EDC/PPCP Sources

- Colorado River
- Wastewater discharges into rivers and groundwater
- Leaking septic systems
- Houseboats & direct contact (recreation)



A Few Numbers 2 to 10 ng/L 20 ng/L to 1 Source < 2 ng/L 10 to 20 > 1 ug/L ng/L ug/L & ≤ Blank Caffeine None **CAP Canal Steroids** Ibuprofen None Carbamazepine Diclofenac Others Meprobamate Colorado Naproxen River (SRP Sucralose water a little lower) Activated Steroids Fluoxetine caffeine, carbazepine, hydrocodone, none sludge Others diuron, ibuprofen, meprobamate, sulfamethoxazole, WWTP with nitrification DEET, Erythromycin, trimethoprim, primidone, dilantin, triclosan, diclofenac, sucralose Raw A few None Estrogens Testosterone, Ibuprofen, Progesterone, naproxen, triclosan Fluoxetine wastewater hydrocodone, meprobamate, sucralose, acetominophen, pentoxifylline, DEET, erythromycin, caffeine, cotinine, oxybenzone, trimethoprim, sulfamethoxazole primidone, carbamazepine, dilantin, diclofenac




Occurrence of Chemotherapy Drugs

	Into a tara a sa	T 16	Danis and late	0-1
	Irinotecan	Tamoxifen	Daunorubicin	Ccl.phosphamide
Series 1				
Hospital A	<	4.44	<	<
Hospital B	<	<	<	<
Hospital D	<	<	<	<
Hospital E	<	30.1	<	<
WWTP Influent	<	1.34	<	<
WWTP Effluent	<	<	<	<
Series 2				
Hospital A	<	0.70	0.90	<
Hospital B	<	<	0.48	<
Hospital C	<	0.39	<	<
WWTP Influent	<	0.49	<	<
WWTP Effluent	<	<	<	<
WWTP Effluent	<	<	<	<

The Challeng	e of p	ot Da	ta ana	lvsis
Sample Name			Triclosan	
lab blank	1.41	ND	1.04	< 0
field blank	1.12	ND	0.97	< 0
Sedona A	3.95	ND	0.78	< 0
Sedona A Duplicate	5.71	1.29	1.34	< 0
Sedona B	9.33	1.40	2.03	< 0
Sedona C	6.68	2.21	1.04	1.36
Sedona D	6.95	ND	1.56	< 0
Verde E	18.20	3.85	0.90	< 0
Verde E (Duplicate)	22.10	4.22	1.13	< 0
Verde F	13.10	ND	1.51	< 0
Verde G	7.99	ND	2.23	< 0
Verde H	4.91	ND	1.07	< 0
Verde I	6.19	ND	1.16	< 0
Verde I (duplicate)	5.83	ND	0.68	< 0
Hwy 87 at Beeline	25.50	ND	1.04	< 0
Blue Point Bridge	6.07	1.31	0.72	0.60
WTP Raw water	9.49	ND	1.16	< 0
WTP Settled water	13.30	ND	0.66	0.97
WTP after chlorine	10.90	1.54	1.09	< 0
WWTP raw	51300.00	7380.00	1400.00	4060.00
WWTP treated	13.90	10.80	111.00	1010.00
WWTP treated - post UV	19.70	10.70	57.90	976.00

Full-Scale Water Treatment Plants From Across the USA

From: Removal of EDCs and Pharmaceuticals in Drinking and Reuse Treatment Processes [Project #2758] by

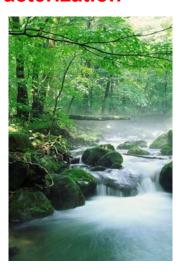
Shane A. Snyder, Eric C. Wert, Hongxia Lei, Paul Westerhoff, and Yeomin Yoon

aw Water Summary (ng/L)									
AVE SD Hits Percent									
DEET	10.8	7.9	18	100.0					
Caffeine	26.6	19.9	17	94.4					
TCEP	21.9	18.2	17	94.4					
Dilantin	4.1	3.7	16	88.9					
Carbamazepine	5.7	6.2	16	88.9					
Sulfamethoxazole	17.8	15.6	15	83.3					
Ibuprofen	7.3	7.6	15	83.3					
Atrazine	153.8	225.1	14	77.8					
Meprobamate	6.8	4.5	12	66.7					
lopromide	13.8	16.1	11	61.1					
Naproxen	5.6	6.1	11	61.1					
Gemfibrozil	6.1	4.1	11	61.1					
Erythromycin-H₂O	2.7	0.8	8	44.4					
Triclosan	1.7	0.9	5	27.8					
Trimethoprim	2.3	0.1	4	22.2					
Acetaminophen	3.6	4.0	4	22.2					
Hydrocodone	1.9	0.0	2	11.1					
Oxybenzone	1.3	0.4	2	11.1					
Estrone	1.4	0.0	1	5.6					
Testosterone	1.0	0.0	1	5.6					
Androstenedione	1.9	0.0	1	5.6					

Finished Water Summary (ng/L)								
	AVE	SD	Hits	Percent				
DEET	10.9	9.6	17	94.4				
TCEP	9.9	5.6	16	88.9				
Caffeine	27.7	24.7	15	83.3				
lbuprofen	10.4	11.2	14	77.8				
Atrazine	117.8	179.2	13	72.2				
Meprobamate	5.7	3.3	12	66.7				
Dilantin	3.3	2.2	11	61.1				
lopromide	9.0	4.6	10	55.6				
Carbamazepine	4.1	1.5	8	44.4				
Gemfibrozil	5.2	3.3	4	22.2				
Estrone	1.2	0.1	2	11.1				
Acetaminophen	1.1	0.0	1	5.6				
Erythromycin-H₂O	2.6	0.0	1	5.6				
Sulfamethoxazole	2.1	0.0	1	5.6				
Naproxen	1.0	0.0	1	5.6				

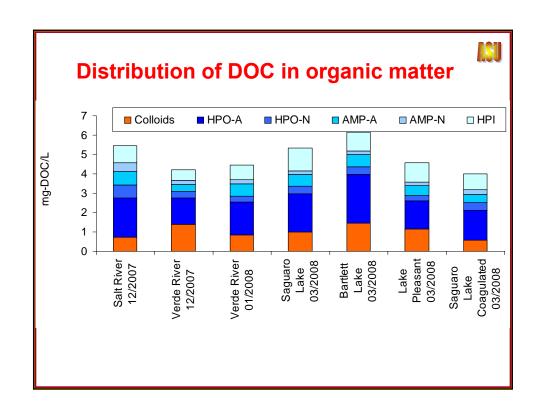
Full-scale performance follows ASU lab-scale predictions **Example – Conventional WTP with Cl₂** Finished % Removed Predicted 20 35 Caffeine 31 <1.0 Sulfamethoxazole >82 >99 2.6 2.3 12 13 Meprobamate Dilantin 3.7 2.2 41 18 TCEP 42 5.8 86 4 Carbamazepine 1.2 <1.0 >17 25 DEET 17 16 6 15 Atrazine 457 431 4 25 lopromide 6.6 7.8 0 Naproxen 1.8 <1.0 >44 >93 3.6 3.0 17 40 Ibuprofen 1.7 <1.0 >41 75 Gemfibrozil

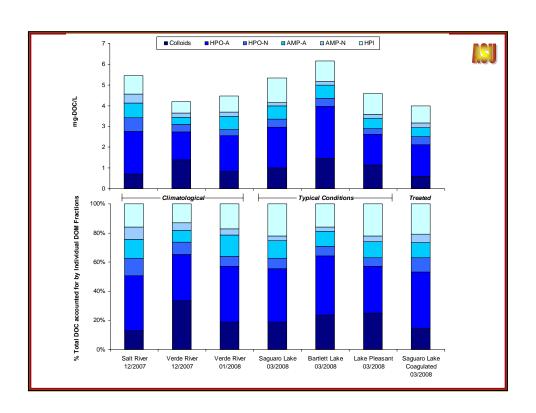
Full-scale performance follows Iab-scale predictions Example – WTP with Ozone								
	Raw	Finished	% Removal	Predicted				
Caffeine	4.1	<1.0	>99	>99				
Sulfamethoxazole	11	<1.0	>99	>99				
Meprobamate	13	9.4	28	50				
Dilantin	3.1	1.5	52	80				
TCEP	5.0	6.5	0	10				
Carbamazepine	3.5	<1.0	>99	>99				
DEET	4.0	2.0	50	70				
Atrazine	1.4	<1.0	>50	50				
Estrone	1.4	<1.0	>50	>99				
Testosterone	1.0	<1.0	>50	>99				

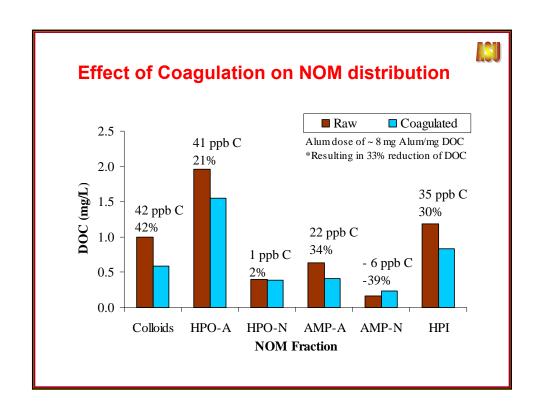

Summary of Selected Compounds (X: 25-50% XX: 50-90% XXX: >90% Removal)									
Analyte Coag PAC CI2 O3 UV									
Iopromide		Х	Х	XX	XX				
Meprobamate		Χ		XX					
Sulfamethoxazole		X	XXX	XXX	XXX				
Gemfibrozil		X	Х	XXX					
DEET		X	Х	XX					
TCEP		X							
Galaxolide		XX	Χ	XX	?				
Atrazine		XX		XX	XX				
Carbamazepine		XX		XXX					
Ethynylestradiol		XX	XXX	XXX	XXX				
Testosterone	X	XX	Χ	XXX	XX				
Androstenedione	X	XX	Χ	XX(X)	XX				
Benzo[a]pyrene	X	XX	XX	XX	?				
Progesterone	X	XX	X	XX(X)	XX				
Oxybenzone		XXX	XXX	XXX	XX				
Pyrene		XXX	Х	XXX	?				

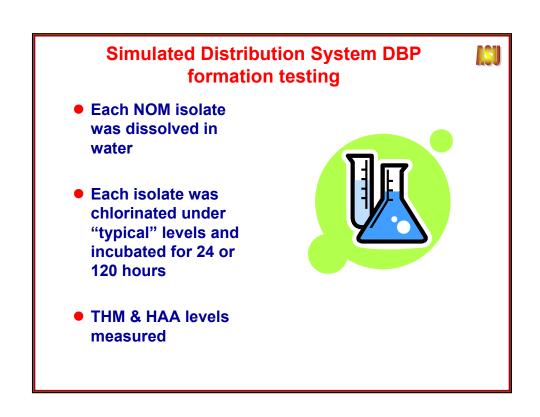
NOM Isolation & Characterization

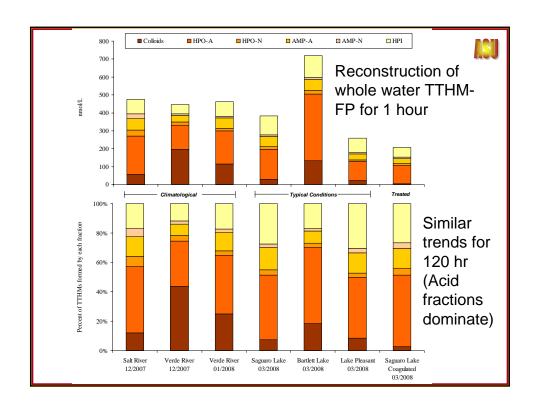
- NOM is made of unique chemical groups (acids, neutrals, ..)
- Each group has different removal capabilities and ability to form DBPs
- This work with Carollo and Malcolm Pirnie helped them interpret trends in water sources and climatic events on NOM behaviour and treatment

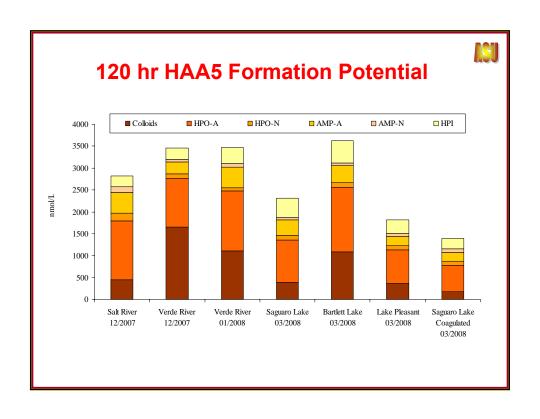





Sampling Locations & Time


			Volume	рН	DOC	TDN	DON
Location	Sample	Date	liters		mgC/L	mgN/L	mgN/L
Salt River	Climatological	12/2007	77.7	8.0	3.64	0.672	0.476
Verde River	Climatological	12/2007	76.2	8.2	5.49	1.98	0.720
Verde River	Climatological	1/2008	76.8	8.2	4.82	1.22	0.640
Saguaro Lake	Lake	3/2008	77.2	8.8	5.85	1.08	0.426
Bartlett Lake	Lake	3/2008	77.4	9.2	6.02	0.614	0.388
Lake Pleasant	Lake	3/2008	76.1	7.7	4.56	1.07	0.593
Saguaro Lake Coagulated	Treated Lake	3/2008	36.8	7.1	3.92	0.924	0.362


Carbon recovery during isolation averaged 95% (77%-145%)

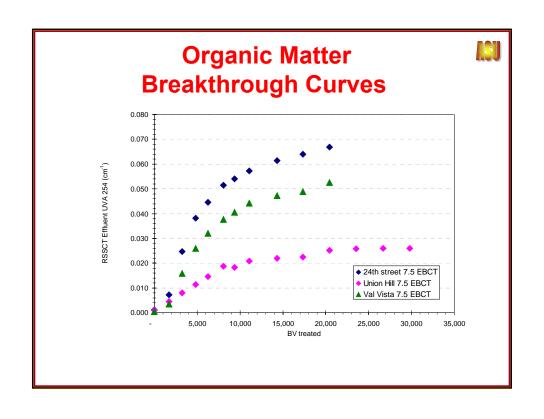


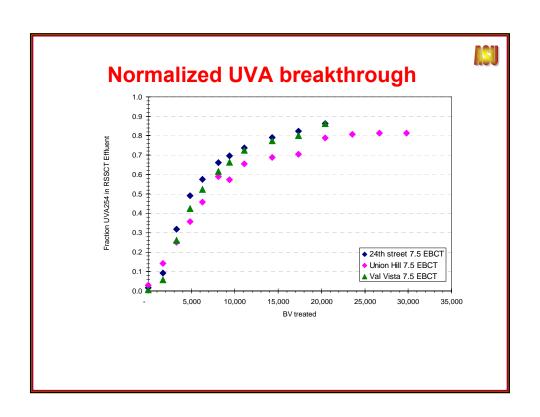
Summary

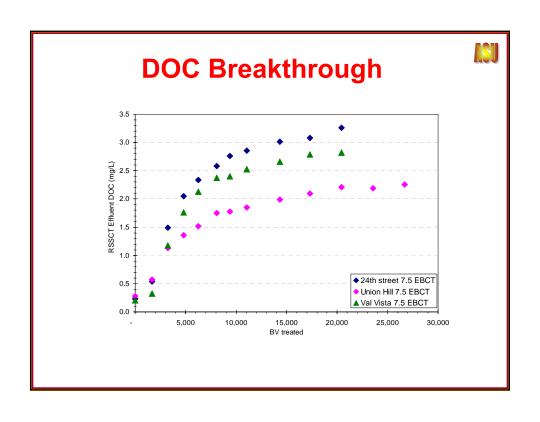
- No distinct difference was present between climatological, lake, or treated NOM pools
- The dominance (% of DOC in initial water) was as follows:
 - ♦ HPO-A > Colloids > HPI > AMP-A > HPO-N > AMP-N
- All NOM isolates form both TTHMs and HAAs but specific NOM isolates are more reactive than others.
 - ♦ HPO-A > Colloid > HPI > AMP-A > HPO-N > AMP-N
- Coagulation was observed to be better at removing colloids and acid fractions while not removing a notable portion of the neutrals.
- Higher SUVA NOM isolates react more rapidly to form TTHMs than lower SUVA NOM isolates.

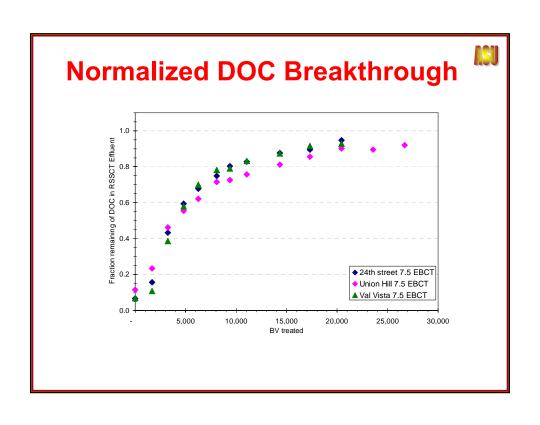
GAC to Remove Organics & DBP Precursors

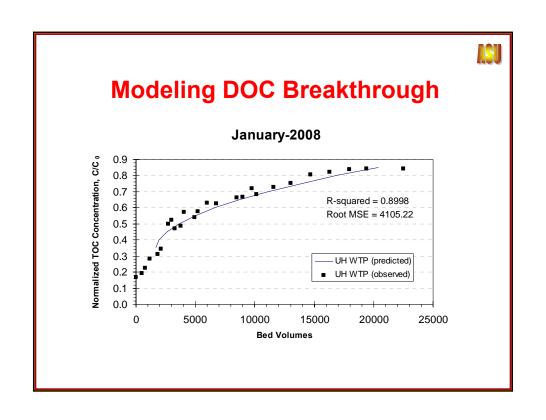
DBP Precursors include:

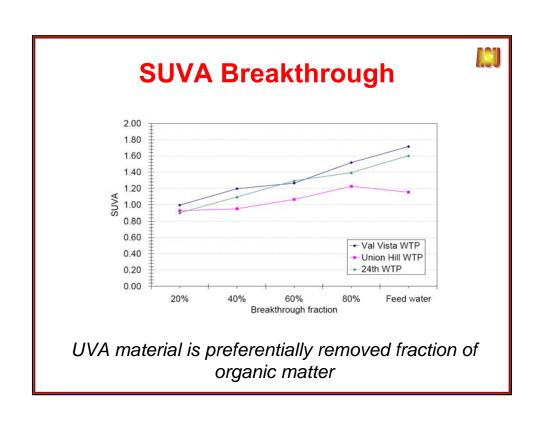

- organic carbon
- bromide
- organic nitrogen

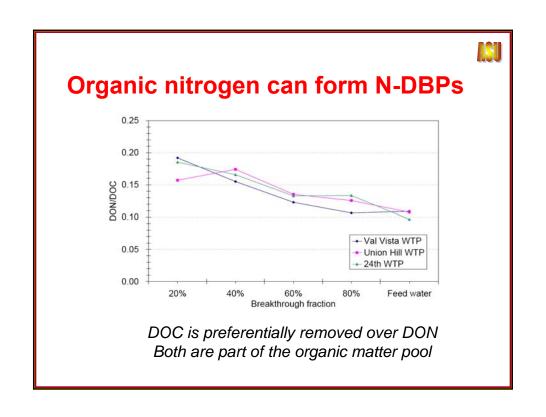


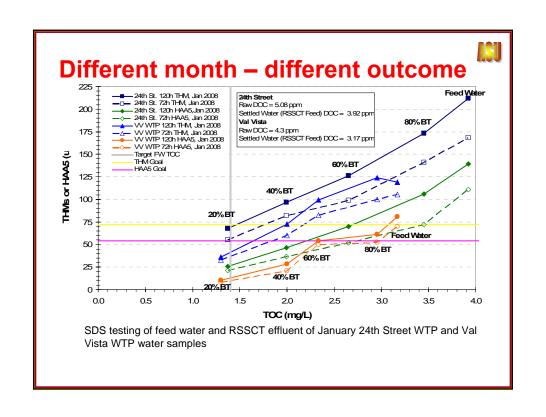


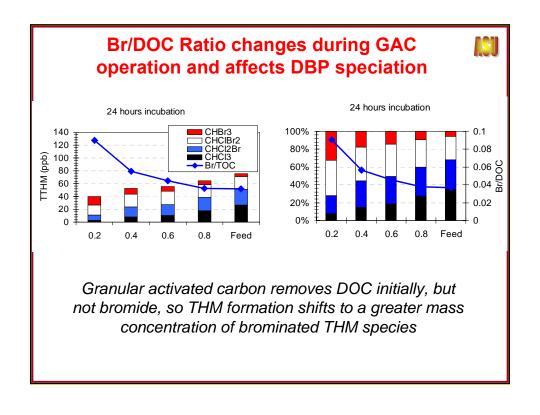

RSSCT Sampling and SDS testing

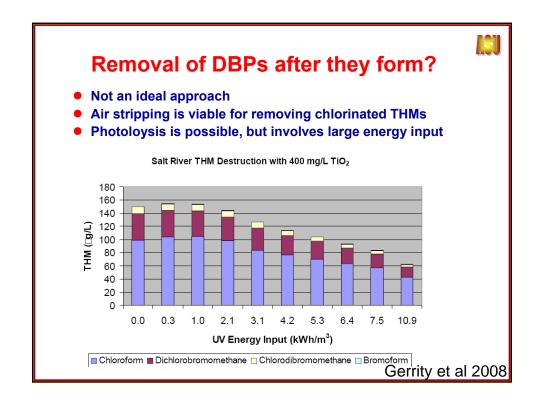

- Project conducted in cooperation with City of Phoenix, Carollo Engineers and Malcolm Pirnie Inc.
- Samples were collected every 12 hours in the first 3 days and then once per day during RSSCT test
- Parameters monitored: DOC, TDN and UV254.
- Simulated distribution system (SDS) test at 20%, 40%, 60% and 80% of UV254 breakthrough.
- 72 hours and 120 hours holding time for SDS (Analyzed by City of Phoenix)











Future Directions & Discussion

- Where do you want to see our research go in 2009?
- Continued monitoring of EDC/PPCPs at potential "hot spot" locations
- Consideration of climate change on water quality
- Water-energy nexus issues related to water quality in central Arizona
- Characterization of organic colloid removal by different treatment trains
- As T&O levels increase be able to respond with key research needs